Posts Tagged ‘stem cell research’

Turning Stem Cells into Blood

 :: Posted by American Biotechnologist on 07-14-2014

The ability to reliably and safely make in the laboratory all of the different types of cells in human blood is one key step closer to reality.

Writing today in the journal Nature Communications, a group led by University of Wisconsin-Madison stem cell researcher Igor Slukvin reports the discovery of two genetic programs responsible for taking blank-slate stem cells and turning them into both red and the array of white cells that make up human blood.

The research is important because it identifies how nature itself makes blood products at the earliest stages of development. The discovery gives scientists the tools to make the cells themselves, investigate how blood cells develop and produce clinically relevant blood products.

“This is the first demonstration of the production of different kinds of cells from human pluripotent stem cells using transcription factors,” explains Slukvin, referencing the proteins that bind to DNA and control the flow of genetic information, which ultimately determines the developmental fate of undifferentiated stem cells.

During development, blood cells emerge in the aorta, a major blood vessel in the embryo. There, blood cells, including hematopoietic stem cells, are generated by budding from a unique population of what scientists call hemogenic endothelial cells. The new report identifies two distinct groups of transcription factors that can directly convert human stem cells into the hemogenic endothelial cells, which subsequently develop into various types of blood cells.

The factors identified by Slukvin’s group were capable of making the range of human blood cells, including white blood cells, red blood cells and megakaryocytes, commonly used blood products.

Read more…

The promise of research with stem cells

 :: Posted by American Biotechnologist on 09-19-2012

Stem cells can become anything - but not without this protein

 :: Posted by American Biotechnologist on 08-21-2012

How do stem cells preserve their ability to become any type of cell in the body? And how do they “decide” to give up that magical state and start specializing?

If researchers could answer these questions, our ability to harness stem cells to treat disease could explode. Now, a University of Michigan Medical School team has published a key discovery that could help that goal become reality.

In the current issue of the prestigious journal Cell Stem Cell, researcher Yali Dou, Ph.D., and her team show the crucial role of a protein called Mof in preserving the ‘stem-ness’ of stem cells, and priming them to become specialized cells in mice.

Their results show that Mof plays a key role in the “epigenetics” of stem cells — that is, helping stem cells read and use their DNA. One of the key questions in stem cell research is what keeps stem cells in a kind of eternal youth, and then allows them to start “growing up” to be a specific type of tissue.

Read more…

How bureaucracy is killing innovative medical research

 :: Posted by American Biotechnologist on 12-12-2011

The promise of stem cell research for drug discovery and cell-based therapies depends on the ability of scientists to acquire stem cell lines for their research.

A survey of more than 200 human embryonic stem cell researchers in the United States found that nearly four in ten researchers have faced excessive delay in acquiring a human embryonic stem cell line and that more than one-quarter were unable to acquire a line they wanted to study.

“The survey results provide empirical data to support previously anecdotal concerns that delays in acquiring or an inability to acquire certain human embryonic stem cell lines may be hindering stem cell science in the United States,” said Aaron Levine, an assistant professor in the School of Public Policy in the Ivan Allen College of Liberal Arts at the Georgia Institute of Technology.

Results of the survey were published in the December issue of the journal Nature Biotechnology. Funding for the study was provided by the Kauffman Foundation’s Roadmap for an Entrepreneurial Economy Program.
Read the rest of this entry »

To glycolisize or oxidative phosphorylize, that is the stem cell question

 :: Posted by American Biotechnologist on 11-16-2011

Human pluripotent stem cells, which can develop into any cell type in the body, rely heavily on glycolysis, or sugar fermentation, to drive their metabolic activities.

In contrast, mature cells in children and adults depend more on cell mitochondria to convert sugar and oxygen into carbon dioxide and water during a high energy-producing process called oxidative phosphorylation for their metabolic needs.

How cells progress from one form of energy production to another during development is unknown, although a finding by UCLA stem cell researchers provides new insight for this transition that may have implications for using these cells for therapies in the clinic.
Read the rest of this entry »