Posts Tagged ‘epigenetics’

Cancer Leaves a Common Fingerprint on DNA

 :: Posted by American Biotechnologist on 08-26-2014

Regardless of their stage or type, cancers appear to share a telltale signature of widespread changes to the so-called epigenome, according to a team of researchers. In a study published online in Genome Medicine on Aug. 26, the investigators say they have found widespread and distinctive changes in a broad variety of cancers to chemical marks known as methyl groups attached to DNA, which help govern whether genes are turned “on” or “off,” and ultimately how the cell behaves. Such reversible chemical marks on DNA are known as epigenetic, and together they make up the epigenome.

“Regardless of the type of solid tumor, the pattern of methylation is much different on the genomes of cancerous cells than in healthy cells,” says Andrew Feinberg, M.D., M.P.H., a professor of medicine, molecular biology and genetics, oncology, and biostatistics at the Johns Hopkins University School of Medicine. Feinberg led the new study along with Rafael Irizarry, Ph.D., a professor of biostatics at Harvard University and the Dana-Farber Cancer Institute. “These changes happen very early in tumor formation, and we think they enable tumor cells to adapt to changes in their environment and thrive by quickly turning their genes on or off,” Feinberg says.

Feinberg, along with Johns Hopkins University School of Medicine oncology professor Bert Vogelstein, M.D., first identified abnormal methylation in some cancers in 1983. Since then, Feinberg’s and other research groups have found other cancer-associated changes in epigenetic marks. But only recently, says Feinberg, did researchers gain the tools needed to find out just how widespread these changes are.

For their study, the research team took DNA samples from breast, colon, lung, thyroid and pancreas tumors, and from healthy tissue, and analyzed methylation patterns on the DNA. “All of the tumors had big blocks of DNA where the methylation was randomized in cancer, leading to loss of methylation over big chunks and gain of methylation in smaller regions,” says Winston Timp, Ph.D., an assistant professor of biomedical engineering at Johns Hopkins. “The changes arise early in cancer development, suggesting that they could conspire with genetic mutations to aid cancer development,” he says.

The overall effect, Feinberg says, appears to be that cancers can easily turn genes “on” or “off” as needed. For example, they often switch off genes that cause dangerous cells to self-destruct while switching on genes that are normally only used very early in development and that enable cancers to spread and invade healthy tissue. “They have a toolbox that their healthy neighbors lack, and that gives them a competitive advantage,” Feinberg says.

“These insights into the cancer epigenome could provide a foundation for development of early screening or preventive treatment for cancer,” Timp says, suggesting that the distinctive methylation “fingerprint” could potentially be used to tell early-stage cancers apart from other, harmless growths. Even better, he says, would be to find a way to prevent the transition to a cancerous fingerprint from happening at all.

Thanks to Johns Hopkins Medicine for contributing this story.

Epigenetic biomarkers may predict if a specific diet and exercise regimen will work

 :: Posted by American Biotechnologist on 05-30-2013

Would you be more likely to try a diet and exercise regimen if you knew in advance if it would actually help you lose weight? Thanks to a new report published in the June 2013 issue of The FASEB Journal, this could become a reality. In the report, scientists identify five epigenetic biomarkers in adolescents that were associated with a better weight loss at the beginning of a weight loss program. Not only could this could ultimately help predict an individual’s response to weight loss intervention, but it may offer therapeutic targets for enhancing a weight loss program’s effects.

Read more…

Mapping the embryonic epigenome

 :: Posted by American Biotechnologist on 05-09-2013

A large, multi-institutional research team involved in the NIH Epigenome Roadmap Project has published a sweeping analysis in the current issue of the journal Cell of how genes are turned on and off to direct early human development. Led by Bing Ren of the Ludwig Institute for Cancer Research, Joseph Ecker of The Salk Institute for Biological Studies and James Thomson of the Morgridge Institute for Research, the scientists also describe novel genetic phenomena likely to play a pivotal role not only in the genesis of the embryo, but that of cancer as well. Their publicly available data, the result of more than four years of experimentation and analysis, will contribute significantly to virtually every subfield of the biomedical sciences.

After an egg has been fertilized, it divides repeatedly to give rise to every cell in the human body—from the patrolling immune cell to the pulsing neuron. Each functionally distinct generation of cells subsequently differentiates itself from its predecessors in the developing embryo by expressing only a selection of its full complement of genes, while actively suppressing others. “By applying large-scale genomics technologies,” explains Bing Ren, PhD, Ludwig Institute member and a professor in the Department of Cellular and Molecular Medicine at the UC San Diego School of Medicine, “we could explore how genes across the genome are turned on and off as embryonic cells and their descendant lineages choose their fates, determining which parts of the body they would generate.”

Read more…

Rewriting Molecular Biology Textbooks…Again!

 :: Posted by American Biotechnologist on 05-17-2012

Over the past decade, research in the field of epigenetics has revealed that chemically modified bases are abundant components of the human genome and has forced us to abandon the notion we’ve had since high school genetics that DNA consists of only four bases.

Now, researchers at Weill Cornell Medical College have made a discovery that once again forces us to rewrite our textbooks. This time, however, the findings pertain to RNA, which like DNA carries information about our genes and how they are expressed. The researchers have identified a novel base modification in RNA which they say will revolutionize our understanding of gene expression.

Their report, published May 17 in the journal Cell, shows that messenger RNA (mRNA), long thought to be a simple blueprint for protein production, is often chemically modified by addition of a methyl group to one of its bases, adenine. Although mRNA was thought to contain only four nucleobases, their discovery shows that a fifth base, N6-methyladenosine (m6A), pervades the transcriptome. The researchers found that up to 20 percent of human mRNA is routinely methylated. Over 5,000 different mRNA molecules contain m6A, which means that this modification is likely to have widespread effects on how genes are expressed.

Read more…

Escape from the nucleus: The role of cytoplasmic protein methylation

 :: Posted by American Biotechnologist on 01-24-2012

Protein complexes in a muscle cell. Image provided by RUB. © Prof. Wolfgang A. Linke

Alexander Tarakhovsky and colleagues from The Rockefeller University along with colleagues from Ruhr-University Bochum (Germany) have shown that protein methylation in the cytoplasm promotes protein complex formation.

While we are all familiar with the role of methyltransferase in DNA and protein modification in the nucleus, (think epigenetics with regards to DNA), this is the first time that methylation in the cytoplasm has been shown to promote protein complex formation.

The researchers first identified an enzyme which is mainly present in the cytoplasm and which methylates the amino acid lysine (Smyd2). Then they searched for interaction partners of the enzyme Smyd2
and found the heat shock protein Hsp90. The scientists went on to show that Smyd2 and methylated Hsp90 form a complex with the muscle protein titin.

According to the authors, “Titin is the largest protein in the human body and known primarily for its role as an elastic spring in muscle cells. Precisely this elastic region of titin is protected by the association with methylated Hsp90.”

In skeletal muscle cells of the zebrafish, the team explored what happens when the protection by the methylated heat shock protein is repressed. By genetic manipulation they altered the organism in such a way that it no longer produced the enzyme Smyd2, which blocked the methylation of Hsp90. Without methylated Hsp90, the elastic titin region was unstable and muscle function strongly impaired; the regular muscle structure was partially disrupted.

Click here for a link to the Genes and Development paper.