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I. INTRODUCTION 

A. Introduction to ADF S T E M  

The purpose of this paper is to describe how an annular dark-field (ADF) 
image is formed in a scanning transmission electron microscope (STEM), 
and to use that understanding to explain how the image data may be used 
to provide atomic-resolution information about the specimen. We start with 
a brief description of a STEM and the ADF detector. 

A STEM is in principle very similar to the more commonly known 
scanning electron microscope (SEM) in that electron optics are used before 
the specimen to focus an electron beam to form an illuminating spot, or 
probe (Figure 1), that is scanned over the specimen in a raster fashion (see 
Crewe [1980] for a description of the physics of STEM). Various signals 
produced by the scattering of the electrons can be detected and displayed as 

FIGURE 1. Schematic of the scanning transmission electron microscope (STEM) showing 
the geometry of the annular dark-field (ADF) detector, and the bright-field (BF) detector for 
phase-contrast imaging. 
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FIGURE 2. Simultaneously recorded (a) ADF and (b) BF images of GaAs( l l0 ) .  The BF 
image shows lower resolution than the ADF image, and in this case the atoms are black 
contrast. The ADF intensity profile (c) shows the polarity of the lattice through the Z-contrast. 

a function of the illuminating probe position. The major difference between 
SEM and STEM is that a thin, electron-transparent specimen is used in 
STEM, allowing transmitted electrons to be detected. Since there is very 
little scattering of the electrons in a thin sample, little beam spreading occurs 
and the spatial resolution is mainly controlled by the illuminating probe 
size. Typical electron-optical parameters for STEM are comparable to the 
conventional high-resolution transmission electron microscope, so that 
typical accelerating voltages are in the range 100-300 kV and the probe 
forming lens (known as the objective lens) has a coefficient of spherical 
aberration of the order of 1 mm. With such parameters, the illuminating 
probe can have a dimension similar to that of an atom (a few ~ngstroms) 
and atomic resolution imaging is possible. 

Annular dark-field imaging refers to the use of a particular detector 
geometry in STEM. A geometrically large annular detector is placed in the 
optical far field beyond the specimen (Figure 1). The total intensity detected 
over the whole detector is recorded and displayed as a function of the 
position of the illuminating probe. Since the detector only receives a signal 
when the specimen is present, the vacuum appears dark, hence the name, 
and the heavier the atom, the higher the intensity of the scattering, which 
leads to atomic number (Z) contrast in the image. The most important 
feature of ADF imaging is that it can be described as being incoherent, which 
has many advantages at atomic resolution. Figure 2 shows the incoherent 
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and Z-contrast nature of an ADF image, and also how the phase contrast, 
bright field (BF) image can be recorded simultaneously for comparison. A 
major purpose of this paper will be to explain how the incoherence arises, 
why it is important, and how it may be used. The first step is to understand 
the difference between coherent and incoherent imaging. 

B. Coherent and Incoherent Imag&g 

1. High-Resolution TEM 

Hitherto, the majority of TEM imaging at atomic resolution has been 
performed using conventional high-resolution TEM (HRTEM) [Spence, 
1988], and there is a huge range of applications (see Smith [1997] for a 
review). Conventional HRTEM is a coherent mode of imaging. The basic 
principle is that an electron transparent sample is illuminated by coherent 
plane-wave illumination. The exit surface wavefunction, ~(R), is then 
magnified by the objective lens, along with further lenses to provide 
additional magnification, to form a highly magnified image. Due to the 
inherent lens aberrations, especially spherical aberration [Scherzer, 1936], 
there is a blurring of the exit surface wavefunction as it propagates to the 
magnified image plane. This blurring can be written as a convolution with 
a point-spread function, P(R), and what is actually measured by a recording 
medium in the image plane is the intensity of this convolution, 

Icoh(R) = IP(R) | ~/(R)I 2 (1) 

This equation is the mathematical definition of coherent imaging. The 
convolution of the exit-surface wavefunction with the point-spread function 
is in complex amplitude, which means that the scattering from spatially 
separated parts of the specimen can interfere in the blurring process. In 
practice, this coherent convolution means that the image intensity can 
fluctuate dramatically as the point-spread function is changed by changing 
the focus, for instance. Contrast reversals can occur depending on whether 
constructive or destructive interference is occurring, and there is uncertainty 
over whether atoms should appear as bright or dark contrast in the image 
[Spence, 1988], which can change depending on the focusing condition. In 
Figure 2, the atoms appear dark in the HRTEM image, but this is not 
always the case. 

The situation is further complicated by the existence of dynamical 
diffraction [Bethe, 1928], which can also have a strong effect on the coherent 
HRTEM image contrast, causing, for instance, contrast reversals as the 
thickness is changed (for example, Glaisher et al. [1989]). As the coherent 
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electron wavefunction propagates through the crystal, the diffracted beams 
can be multiply scattered back onto one another leading to strong and 
complicated reinterference effects. In general, the exit-surface wavefunction 
cannot be directly interpreted in terms of the specimen structure, especially 
when defects such as grain boundaries are being studied [Bourret et al., 
1988]. Generally, an approach is taken where images are simulated from 
trial structure models and are systematically compared with the experimen- 
tal data [M6bus, 1996; M6bus and Dehm, 1996]. For this approach, the 
microscope imaging parameters need to be accurately known, and there is 
the ever-present danger that the correct structure will never be tried as a 
trial object or that an iterative process will find an incorrect local minimum. 

It is interesting to speculate as to why coherent imaging has hitherto 
dominated TEM. The reason may be partly historical and partly because of 
the instrumentation. Other than high resolution imaging, conventional 
TEM machines are also required to form diffraction patterns and diffraction 
contrast images. Both of these applications require coherent illumination to 
allow interference to occur to form the diffraction pattern. Before the advent 
of high-resolution imaging, these modes dominated the use of TEM. 
Additionally, HRTEM is a phase-contrast technique, which requires high 
coherence. As spatial coherence was lost due to the beam divergence 
increasing, users will have observed a loss in contrast, and the tendency 
would therefore have been to keep the spatial coherence as high as possible. 
The implementation of atomic resolution incoherent imaging has required 
the development of dedicated STEM machines capable of working at atomic 
resolution. Such machines have not been nearly as common as conventional 
TEMs, and thus most users have not had the chance to experience 
incoherent imaging. 

2. Incoherent Imaging 

In his classic paper on the resolution limit of the microscope, Lord Rayleigh 
[1896] described the difference between coherent and incoherent imaging. 
He pointed out that if a transmission specimen was illuminated with light 
from a large source giving illumination over a wide range of angles, the 
specimen could be treated as being self-luminous, and that interference 
between the radiation emitted from spatially separated parts of the specimen 
could not interfere, and is thus incoherent. The image then becomes a 
convolution in intensity rather than in complex amplitude, 

I~n~oh(R) = IP(R)I 2 | I~/(R)I 2 (2) 

which is the mathematical definition of incoherent imaging. Compare this 
with Equation (1). Lord Rayleigh also noted that the resolution limit of the 
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microscope in the incoherent regime was twice that of a coherently illumi- 
nated microscope. The vast majority of images that we observe with our 
eyes are incoherent images, because most light sources are extended and 
incoherent. Lord Rayleigh pointed out that incoherent images do not show 
the sharp interference bands that characterize coherent images, and are 
therefore much simpler to interpret. It is because of their incoherent nature, 
that we are able to interpret the images that our eyes see. If we were 
surrounded by coherent illumination, the strong interference effects that we 
would observe would be very confusing. We might have to guess at what 
was near us, and perform an image simulation to compare with the image 
that our eyes observed! 

By remembering that the difficulties in conventional HRTEM, both the 
strong dependence on the imaging parameters and the problems of dynami- 
cal diffraction effects, are mostly born from the coherent nature of the 
illumination, it is clear that incoherent TEM imaging should hold major 
benefits. The first steps in this direction were taken in the development of 
annular dark-field (ADF) imaging in the STEM. An ADF detector had been 
used in the first STEM developed [Crewe et al., 1968a; Crewe et al., 1970] 
to collect a signal that was assumed to be largely elastically scattered. 
Because relatively high-angle scattering was collected by the ADF detector, 
the signal showed strong atomic number (Z) contrast, although the name 
Z-contrast was first applied to a signal derived from the ratio of the ADF 
to inelastic scattering. Later work showed that if any coherently scattered 
Bragg beams were incident on the ADF detector, the contrast could not 
purely be related to atomic number [Donald and Craven, 1979]. Various 
papers then suggested that increasing the angle of the ADF detector such 
that only incoherent thermal diffuse scattering, rather than coherent Bragg 
beams, reached the detector could ameliorate the coherent effects in the 
image [Treacy et al., 1978; Howie, 1979]. The steady improvement in STEM 
performance eventually resulted in the first ADF images being taken at 
atomic resolution [Pennycook and Boatner, 1988; Pennycook and Jesson, 
1990; Shin et al., 1989]. These results, and Figure 2, illustrate how ADF 
STEM imaging gives a direct structure image with peaks at the atom sites, 
without the contrast reversals seen in coherent imaging. Since this initial 
work there has been a growing interest in the application and interpretation 
of ADF imaging, with numerous examples now in the literature. Inevitably, 
the physics behind ADF imaging is more complicated than simply asserting 
that incoherent imaging requires the collection of incoherent thermally 
scattered electrons; for example, the detector geometry itself can impose 
incoherence. The purpose of this article is to present the current understand- 
ing of the principles of ADF imaging, and the way the images may be 
interpreted. 
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C. Outline 

In this article, we have split the discussion of the destruction of coherence 
in the image into two components parallel and perpendicular to the beam 
direction, which we refer to as transverse and longitudinal coherence, 
respectively. In Section II we describe how it is the detector geometry that 
destroys the transverse coherence, even when purely coherent Bragg scatter- 
ing is being collected by the ADF detector. This destruction of transverse 
coherence immediately allows direct interpretation of peaks in the image as 
being atoms or atomic columns in the specimen, which is extremely 
important for structure determination. 

In Section III it is shown that the detector geometry only weakly destroys 
coherence parallel to the beam, and that we must rely on phonon scattering 
to help remove longitudinal coherence effects. This is important in using the 
Z-contrast nature of the image for compositional determination, and we 
discuss the current state in this use of ADF images. 

Since ADF imaging is very different to conventional HRTEM, we need 
to examine the effects of other sources of incoherence, such as the source size 
and the chromatic aberrations. A treatment of such effects is given in Section 
IV, and we examine what might limit the ultimate ADF resolution. Finally, 
in Section V we describe how the ADF image might be used quantitatively 
to accurately determine atomic column positions using the incoherent 
nature of the image, before drawing some conclusions and putting forward 
some future prospects in Section VI. 

Throughout this article the Fourier transform of a real-space function, 
F(R), will often be written F(Q), where Q is a spatial frequency vector in 
reciprocal space. For consistency, the imaging parameters of a VG Micro- 
scopes HB603U STEM will be used in calculations. For this microscope, the 
accelerating voltage is 300 kV and the coefficient of spherical aberration, Cs, 
is 1 ram. 

II. TRANSVERSE INCOHERENCE 

A. S T E M  Imaye Formation 

We start by developing a general formulation of imaging in a STEM that 
can be applied to imaging both elastic and inelastic scattering events. For 
elastic scattering, this formulation also holds for CTEM imaging through 
the principle of reciprocity [Cowley, 1969; Zeitler and Thomson, 1970], 
which allows the source and detector planes to be interchanged. The 
detector in the image plane of a C T E M  is equivalent to the source plane in 
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a STEM, and a certain detector geometry in a STEM corresponds to 
an illuminating source geometry in a CTEM. Thus a STEM can be 
thought of as a conventional TEM with the electrons propagating in 
the reverse direction. It is now clear that a small axial BF detector in a 
STEM (Figure 1) is equivalent to axial illumination in a TEM, and thus an 
H R T E M  image will be formed with such a STEM detector. Unless explicitly 
stated, in this article we use the STEM point of view. A partial plane wave 
in the cone of coherent illumination is focused by the objective lens to form 
the illuminating probe (Figure 3). This partial plane wave can be labeled by 
the transverse component, K i, of its wavevector; by transverse we mean 
perpendicular to the optic axis of the microscope. Because of the objective 
lens aberrations, each partial plane wave will have experienced a phase shift, 
)~(Ki), relative to the K i = 0 wave, which in the case of spherical aberration 

FIGURE 3. Contrast in a STEM image arises from interference between beams in the 
incident cone that are scattered into the same final wavevector and interfere. For Bragg beams, 
this interference can only occur in diffraction disc overlap regions. 
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FIGURE 4. The intensity profile of the illuminating probe at Scherzer defocus for the 
HB603U STEM. 

and defocus is 

1 3 4 z(Ki) -- ~z2zlK~l 2 + ~2 CslKil (3) 

where 2 is the electron wavelength, z is the defocus, and C s is the coefficient 
of spherical aberration. Other terms, such as astigmatism and coma, could 
also be included in this phase function. An objective aperture, described by 
a circular top-hat support function H(Ki), is normally used to prevent 
strongly aberrated, high-angle beams contributing to the image forming 
process. The functions H(Ki) and z(Ki) can be combined as the magnitude 
and phase, respectively, of a complex aperture function, A(Ki). The illumi- 
nating STEM probe wavefunction, P(R) (Figure 4), is a sum over all the 
partial plane waves, 

P(R) = f A ( K i ) e x p [ - -  i2rcKi �9 R-] dK i (4) 

which we take as the definition of the inverse Fourier transform of A(Ki). 
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Scan coils are present in the STEM to move the probe across the specimen, 
and such a shift can be incorporated by multiplying A(Ki) by exp(i2rcKi-Ro), 
which gives P(R - Ro) when substituted in Equation (4). 

Consider now a scattering event that scatters from the initial partial plane 
wave, K i, into a final plane wave, with wavevector transverse component Kf, 
changing the magnitude and phase of the wave by a complex multiplier, 
q~(Kf, Ki). Assuming that there is no loss of coherence, we can write the 
intensity measured in the far field as 

If I I(Kf, Ro) = A(K~) exp[-i2~zK i �9 Ro]~(Kf, Ki) dK i (5) 

because Kf defines a position in the far field. Expanding the square gives a 
double integral 

f f i)A (Ki) exp[i2rc(Ki-Ki)'Ro]~(Kf, Ki)tlfl*(Kf, K'i)dKidK'i I(Kf, Ro) = A(K * ' 

(6) 

However, this expression can be reduced back to a single integral by taking 
the Fourier transform of Equation (6) [Rodenburg and Bates, 1992] to give 
a function entirely in reciprocal space 

f I(Kf, Q) = A ( K i ) A * ( K  i + Q)qJ(Kf, K~)qJ*(Kf, K i + Q)dK i (7) 

which is the Fourier transform of the image intensity that would be recorded 
for a point detector at position Kf in the far field. From Equation (7) it is 
clear that the contributions to an image spatial frequency, Q, come from 
pairs of incident partial plane-waves separated by the reciprocal-space 
vector Q (Figure 3). These two partial plane waves are scattered by the 
specimen into the same final wavevector, Kf, where they interfere. If the 
scattering is purely Bragg diffraction from a crystalline specimen, a series of 
Bragg discs will be seen in the form of a coherent convergent beam electron 
diffraction (CBED) pattern. In the disc overlap regions, two incident partial 
plane waves are being scattered into a single, final wavevector, and interfer- 
ence can occur. Since the probe position, R 0, is defined in reciprocal space 
by a linear phase variation over the incident wave, the phase difference 
between the two incident waves will be 2~zQ.R o. Scanning the probe, 
therefore, means that the interference between the two incident partial plane 
waves will cause the intensity to oscillate at a rate given by Q, leading to 
image contrast. Thus STEM lattice imaging depends on the detection of 
interference in the overlap regions of diffracted discs, as noted by Spence and 
Cowley [1978]. 
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B. The Conditions for Incoherent Imaging 

In his discussion of incoherent imaging, Lord Rayleigh [1896] suggested 
that illuminating an object with incoherent illumination over a large range 
of angles rendered the object effectively self-luminous, and destroyed any 
interference between scattering from spatially separated parts of the object. 
Remembering that a large source in a conventional microscope is equivalent 
to a large detector in a STEM, we now need to include the effects of the 
detector. At this point it is easiest to consider a very thin specimen that can 
be treated as simply multiplying the illuminating wave by a complex 
function, O(R), that describes the magnitude and phase change of the 
transmitted wave. The Fourier transform of O(R) is written, T(Q). The 
Fourier transform of the image that would be recorded using an annular 
dark-field detector can now be formed simply by integrating Equation (7) 
over some detector function, D(K0, so that 

I(Q) = D(K0 A(Ki)A*(Ki+Q)~(Ke-Ki)~*(Ke-Ki-Q)dKi dKe 

= f A(Ki- Q/2)A*(K~ + Q/2) 

x ~ D(K0~(K~- K~ + Q/2)~*(K ~- Ki-  Q/Z) dKe dKi (s) 
J 

with the shift of K i by - Q / 2  allowed because the integral has an infinite 
limit. This is the expression derived by Loane et al. [1992]. The domain of 
integration over Ki is limited by A(K i -Q/2)A*(K i + Q/2) to be just the 
region of overlap between two objective apertures separated by Q. If D(K 0 
has a geometry that is much larger than the objective aperture, the 
dependence of the Ke integral on K i becomes very small allowing the 
integrals to be separated, thus, 

f IADv(Q)---- A(K~-- Q/2)A*(K~ + Q/2) dK~ 

• .f D(KOT(Ke- Ki + Q/2)'V*(Ke- K i -  Q/2) dKe 

, . , . ,  

- T(Q)O (Q) (9) 

where T(Q) is the transfer function for incoherent imaging. By analogy with 
light optics [Born and Wolf, 1980], this transfer function is referred to as 
the optical transfer function (OTF), and it contains information about the 
objective lens defocus, aberrations, and the aperture. Examples of OTFs for 
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various degrees of spherical aberration have been calculated by Black and 
Linfoot [1957]. The function, O(Q) is the Fourier transform of the object 
function, containing information about the specimen scattering and the 
detector. We will examine its form for various specimen approximations 
later. 

Since Equation (9) is a product in reciprocal-space, taking its Fourier 
transform results in a convolution in real-space between the Fourier trans- 
forms of T(Q) and the object function spectrum, O(Q). The Fourier 
transform of T(Q), however, is simple to interpret. In Equation (9) it can be 
seen that T(Q) is the autocorrelation of A(Ki). The Fourier transform of the 
autocorrelation of a function is equal to the modulus squared of the Fourier 
transform of that function. Since the Fourier transform of A is, from 
Equation (4), the probe function, P(R), we can now write the ADF image 
intensity as 

IADF(Ro) --IP(Ro)I 2 | O(Ro) (10) 

which is the incoherent imaging model as also given in Equation (2). So the 
image intensity can be straightforwardly interpreted as being the convol- 
ution between an object function and a positive-real point-spread function 
(PSF) that is simply the intensity of the illuminating probe. The convolution 
integral is, therefore, summing over the intensity of the probe, because 
interference effects between spatially separated parts of the probe are no 
longer observed, just as if the specimen were self-luminous. Hence the name 
incoherent imaging. The OTF, T(Q), is therefore simply the Fourier trans- 
form of the probe intensity function, ]P(R)] 2. We have plotted the OTF at 
optimum defocus ( - 4 0 n m )  (Figure 5) compared to the conventional 
weak-phase object approximation (WPOA) contrast transfer function 
(CTF) for the same parameters. 

Using this thin specimen approximation, Equation (7) shows that the 
object function is 

f O(Q) = D(Kf)~(Kf-  K i @ Q / 2 ) ~ * ( K f -  K i - -  Q/2)dKf (11) 

where we require that the integral has no dependence o n  K i t o  allow the 
separation of the integrals in Equation (9). The domain of K i is a region 
defined by the overlap of two apertures separated by Q (Figure 3). If ~(K) 
is varying negligibly slowly over the scale of this domain, then the indepen- 
dence of Equation (11) on K~ will be fulfilled no matter what the geometry 
of the detector. A slowly varying ~(K) corresponds to a transmittance 
function, ~(R), that scatters from a highly localized source. Since the 
scattering is from a source much smaller than the probe geometry, interfer- 



ANNULAR DARK-FIELD Z-CONTRAST IMAGING 159 

i 

0.8 

0.6 ~ F  

0.4 

0.2 

0 . . . . . . . .  , 

p 

-0.2 

-0.4 

-0.6 

- 0 , 8  

-! 

~ ...... | 

0 . 8  I 

frequency ! (0.I nm) -i 

FIGURE 5. The optical transfer function (OTF) for incoherent imaging compared to the 
phase contrast transfer function (CTF) for the same defocus and spherical aberration. The 
radius of the objective aperture used for the OTF is marked. 

ence between the scattering from spatially separated regions of the probe 
cannot occur and Equation (9) holds no matter what the detector geometry 
is. Treacy and Gibson [1995] have noted how a small source will give rise 
to an incoherent imaging model, but suggested that for more delocalized 
sources the model failed. However, for delocalized sources it is the detector 
geometry that can impose incoherence. If D(K0 allows the domain of 
integration of Kf to be much greater than the domain of Ki, then any 
variation of Equation (11) as a function of Ki will become negligibly small, 
vanishing completely ifD(K 0 is unity everywhere lade, 1977], which means 
that all transmitted electrons are detected. For a finite detector we are 
assuming that the detector is summing over complete overlap regions, an 
exact approximation in Figure 3, and that the contribution of any overlap 
region intersected by the edge of the detector is negligibly small compared 
to the rest of the detected signal. 

This, then, is the key to forming the incoherent model. For a given spatial 
frequency, Q, there are a range of pairs of incident partial plane waves that 
can contribute. For the incoherent model to apply, all of the available pairs 
must contribute to the image in a similar way so that a simple integral can 
be performed over these pairs as in Equation (9). To achieve this, a detector 
with a geometry much larger than a diffracted disc must be used. This 
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criterion applies to both the detector and its inner hole. Hartel et al. [1996] 
have suggested that an inner radius at least three times the beam conver- 
gence angle should be used. Just as Lord Rayleigh proposed that a large 
source led to incoherent imaging in a conventional microscope, we have 
shown how a large detector leads to incoherent imaging in a STEM. 

C. The Reso lu t ion  L i m i t  

One striking feature of Figure 5 is that the resolution limit for incoherent 
imaging appears to be twice that for the point-resolution in CTEM imaging. 
To understand the origin of this doubling of resolution, it is worth 
comparing incoherent imaging, with a large ADF detector, with conven- 
tional bright-field imaging that would be performed in HRTEM. Using 
plane-wave illumination in HRTEM is equivalent by reciprocity to only 
detecting the intensity at Kr = 0 in a STEM. Under these conditions, 
Equation (8) is no longer separable into two integrals, so the image in- 
tensity cannot be described by a convolution between an object function 
and a PSF as in the incoherent case. Substituting Kr = 0 into Equation (8) 
and inverse Fourier transforming gives the coherent imaging model in 
Equation (1). 

There are two important differences between Equations (1) and (10). 
First, Equation (1) shows that for coherent imaging the phase of the 
convolution between the probe function and the specimen transmittance, 
which are both complex quantities, is lost. If one wished to deconvolve 
the effect of the lens from the image, the phase problem would have to 
be solved first using holography [-Orchowski et al., 1995; Lichte, 1991] 
or focal-series reconstruction ECoene et al., 1992; Van Dyck and Coene, 
1987]. Incoherent imaging does not suffer from a phase problem, and in 
principle the PSF can be deconvolved directly from the incoherent image 
described by Equation (10). Second, as seen in Figure 5, the resolution of 
the ADF is double that for the HRTEM image for the same objective lens 
and aperture. The origins of this effect can be seen by considering the 
coherent CBED pattern formed for two crystalline specimens with different 
lattice spacings (Figure 6). Interference can occur in the overlap regions 
between the discs, which depends on the phase difference between the 
diffracted beams, the lens aberrations, and the probe position [Nellist et al., 
1995]. All STEM image contrast comes from such overlap regions. Conven- 
tional HRTEM imaging requires interference between the zero-order disc 
and two diffracted discs, and therefore the spacing in Figure 6(b) would not 
be resolved. However, an ADF detector will detect the interference regions 
for this crystal, and the spacing will be resolved in the ADF image. Here we 
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FIGURE 6. A schematic geometry of the STEM detectors relative to the diffracted discs. 
For crystal (a) the BF detector senses interference between the 0, g, and - g  discs. A crystal 
with a smaller lattice spacing (b) gives discs more widely space, such that h > g. The BF 
detector senses no interference, whereas the ADF detector senses single-overlap interference. 

have essentially restated, via reciprocity, the conclusion of Lord Rayleigh 
[1896] that the resolution is doubled for incoherent imaging. In real-space 
we can understand this effect in terms of the probe intensity profile (Figure 
4) having approximately half the full width at half maximum of the probe 
amplitude profile because of the modulus squared being taken, thus improv- 
ing the resolving power. 

D. The Thin Specimen Object Function 

Using the thin-object approximation, we now consider the form of the 
object function, O(R), that applies for incoherent imaging. For illustration 
we first discuss an amplitude object, and then go on to the slightly more 
complicated case of a phase object. 
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1. An Amplitude Object 

The theory we are developing is also highly applicable to energy-filtered 
imaging in a STEM, and to examine the effect of the collector aperture. For 
a general review of energy filtered imaging see Kohl and Rose [1985]. Let 
us consider a core excitation of a single atom. Our specimen function, ~p(R), 
will now have a magnitude that is localized in space. In principle we can 
collect all the electrons scattered by this excitation by using an infinite 
collector aperture. In this case D(K 0 is unity everywhere, and Equation (11) 
becomes the autocorrelation of ~(K), 

r = f ~(Kf + Q/2)q'*(Kf - Q/2)dKf (12) 

which transformed into real-space gives an object function, 

such that 

O(R) = ]~(R)I 2 (13)  

I (Ro)  : IP(Ro)[ 2 @ I~P(Ro)l 2 (14) 

identical to Equation (2). 
We can see that a large collector aperture gives an image that approaches 

the perfect incoherent limit, as noted by Kohl and Rose [1985] and 
Browning and Pennycook [1995]. As the specimen function becomes more 
localized, as for higher energy excitations, we have seen that the detector 
geometry becomes irrelevant if the specimen function is much smaller than 
the probe dimensions. The effect of the collector aperture is not a simple 
convolution of the object function with the Fourier transform of the 
collector aperture. The transition from coherent to incoherent imaging as a 
function of collector angle, and the relative independence of localized 
excitations to the detector geometry, is all illustrated in Kohl and Rose 
[1985]. 

2. A Phase Object 

Let us now turn to the question of elastic scattering, which is the important 
process for Z-contrast imaging. Ignoring the effects of the electron wavefront 
propagation within the crystal, that is assuming a thin object, the specimen 
function can be approximated as a pure phase object (see, for example, 
Cowley [1992]), 

O(R) = exp[ - ia Vp(R)] (15) 

where Vp(R) is the projected potential integrated through the thickness of 
the crystal. The object function for perfect incoherence with an infinite 
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detector can be formed as it was for inelastic scattering by using Equation 
(13) which, since we have a pure phase specimen, gives unity everywhere and 
no contrast. This result is not surprising since no electrons are lost for a 
phase object, and therefore all the incident electrons will be detected. 

To form some contrast into the image, we need to introduce a hole in the 
detector, hence the use of an annulus in ADF imaging. The effects of the 
hole in the detector have been considered in the case of a weak-phase object 
[Jesson and Pennycook, 1993], but here we will generalize to a phase object 
which, while ignoring the effects of propagation, does include multiple 
scattering. Ignoring disc-overlap regions intersected by the inner radius of 
the detector, the object function can be written in reciprocal space, 

OaDv(Q) = f DADF(Kf)t[J(Kf + Q/2)t[t*(Kf - Q/2) dKf (16) 

Taking the Fourier transform of Equation (16) and a little algebra gives the 
real-space object function 

OADv(R ) = 6(B) -- 2-~Bi 0(R + B/2)0*(R - B/2) dB (17) 

where the term in parenthesis is the Fourier transform of an infinite detector 
minus a hole with radius, u i, J x is a Bessel function of the first kind, and B 
is a dummy real-space vector. Substituting the phase-object approximation, 
Equation (15), into Equation (17) and writing the integral over a half plane 
by symmetry gives 

fh Ja(2Tcu~[B[) + B/2) B/2)) dB O A D F ( R )  --- 1 -- cos{aVp(R - -  o V p ( R  - -  
alf plane 2~IBI 

(18) 

Equation (18) shows that the hole in the detector has given rise to a 
coherence envelope given by the Airy function that is the Fourier transform 
of the hole. Within this envelope, the electron wavefunction scattered by 
spatially separated parts of the specimen can interfere, illustrated by the 
integral over the cosine function in Equation (18). If the projected potential, 
Vp(R), varies within the coherence envelope, then the cosine function will 
deviate from 1, and contrast will be seen. Although a finite-sized coherence 
envelope is required to form contrast, we are at liberty to make it as small 
as we desire, at the expense of reduced signal. For atomic resolution 
zone-axis imaging, we select an inner radius that results in a coherence 
envelope much narrower than the distance between neighboring atomic 
columns (Figure 7). Each column will then be acting as an independent 
scattering center, incoherent with its neighbors. 
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FIGURE 7. A schematic diagram showing the coherence envelope resulting from the hole 
in the detector and the projected potential. Ideally, the coherence envelope should be smaller 
than the interatomic distance, but to get contrast the potential must vary within the coherence 
envelope. 

Equation (18) also shows that the object function is sensitive to the rate 
of change of the projected potential in the vicinity of R. The potential varies 
most quickly at the center of the atomic column giving rise to an object 
function peaked at the atomic column sites. The rate of change is strongly 
dependent on the nuclear charge, giving a sensitivity to atomic number, 
hence the name Z-contrast. 

If we assume that the specimen is thin and the phase shift small, then we 
can expand Equation (18) to second order in Vp(R), 

OADF(R) = f Jl(2guilBI) 2rcIBI {r + B/2) - CVp(R - B/2)} 2 dB (19) 

cancelling the constants, which is the result derived by Jesson and Penny- 
cook [1993]. An important difference between weak-phase contrast imaging 
in a CTEM and Z-contrast imaging of weak-phase specimens is that the 
lowest-order terms in Z-contrast imaging go as Vp squared, so it cannot be 
referred to as linear imaging. Linear imaging requires interference between 
scattered beams and the unscattered wave, whereas an ADF detector always 
detects interference between two scattered waves. Of course this effect does 
not hinder interpretability in any way, but can lead to effects such as an 
(002) spot present in the Fourier transforms of images of Si(110) [Hillyard 
and Silcox, 1995]. Although the projected potential of S i ( l l 0 )  does not 
contain an (002) Fourier component, the square of the projected potential 
will unless the potential is exactly a set of infinitely narrow 6-functions. 



ANNULAR DARK-FIELD Z-CONTRAST IMAGING 165 

E. Dynamical Scattering Using Bloch Waves 

So far we have considered the destruction of transverse coherence for thin 
specimens, which do allow the inclusion of multiple scattering effects, but 
not propagation through the specimen. We must now consider whether we 
can use an incoherent imaging model in the presence of such propagation. 
To examine the effects of the detector alone, we will not yet include the 
effects of coherence loss due to inelastic scattering, for example, phonon 
scattering. We therefore need to use a theory of dynamical scattering with 
no absorption effects. We will use the approach of Nellist and Pennycook 
[1999], and assume a perfectly periodic specimen, so that we have strong 
Bragg diffracted beams incident on the detector. 

Ignoring the effects of higher-order Laue zone (HOLZ) scattering, which 
is found to have a negligible coherent contribution to the ADF detected 
intensity [Pennycook and Jesson, 1991; Amali and Rez, 1997], we can 
expand the solution to the full three-dimensional Schr6dinger equation, 
4,(R,z), where z is the thickness, in terms of eigenfunctions of the two- 
dimensional Hamiltonian (see, for example, Humphreys and Bithell [-19923 

where 

E(j)z~ 
~,(R, z) = Z ~0J)*~b(R) exp - i n  -~o~j (20) 

J 

hzV2 ) 
-- eV(R) ~b(J)(R) -- E(J)~b(J)(R) (21) 

and V(R) is the potential averaged along the beam direction. Since 
q~(R) must have the periodicity of the crystal lattice, it can be expressed 
in terms of Fourier components, ~J). By assuming plane-wave illumination, 
the boundary conditions give ~0 j) as the coefficient of excitation of the j th  
Bloch wave in Equation (20). 

Using the Bloch wave formulation of dynamical scattering, we can write 
the ADF image intensity as 

I(Ro, z) = f DADF(Kf) f A(Ki) exp[i2rcKi "Ro] ~ (I)(J)*(Ki)(I)~J)(Ki) 
Jg 

I zE(J)(Ki)7 
x exp -ire ~ _] 6(Kf-- Ki-g )  dKi dKf (22) 

where we connected Kf and N i via Bragg scattering through a reciprocal 
lattice vector g, the strength of which is given by the usual terms. Expanding 
the square in Equation (22) gives a double integral similar in form to 
Equation (6), but can be reduced to a single integral again by taking the 
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Fourier transform with respect to R 0 to give an entirely reciprocal space 
formulation, 

I-(Q, z) = ~ o ADF f A(Ki)A(K + Q)~  ,r,(J)*tK ~ (k ) t~  ~m(J)tv" ~,~(k)*,tC " g  i "x"0 ~, i] Q ~l,n, i/"~'g l lX ij'a'g ~tx i) 
g jk 

x exp E -  irc z(E(J)(Ki) - E(k)(Ki)) l dK (23) 

where we have now written the detector function in terms of the discrete 
Bragg beams that are detected, ignoring partially detected overlap regions. 

The advantage of using a completely reciprocal-space formulation is again 
clear. We can choose to evaluate the summation over the Bragg beams, g, 
first to examine the effect of the detector. The g summation acts only on a 
product pair of Bloch wave Fourier components resulting in 

Cjk(Ki) : Z DADFO(gJ)(Ki)(~)gk)*(Ki ) (24) 
g 

so that Equation (23) can now be written 

- f I(Q, z) = A(Ki)A(K i + Q)~ Cjk(Ki)~toJ)*(Ki)*~)(Ki) 
jk 

x exp I _  irc z(EtJ)(K i) - Etk)(Ki)) 1 
2E ~ dK~ (25) 

We can choose to evaluate Equation (24) using the real-space representa- 
tions of the Bloch waves, and assuming the detector to be infinite except for 
a circular hole gives, 

Cjk(Ki )  = 6jk - f Jl(2~uiIBJ) f 27~1BI r C)q~tk)*( K i, C -~- B) dC dB (26) 

The multiplier containing the Bessel function is the Fourier transform of the 
hole in the detector, and is acting a kind of coherence envelope, controlling 
the degree to which different Bloch waves can interfere with each other. By 
introducing the detector function at this point we can determine which pairs 
of Bloch waves can interfere in the image forming process, simplifying any 
calculation by reducing the number of cross-terms that need to be con- 
sidered rather than including them all and summing over the intensity 
incident on the detector, as has been used in multislice approaches [Kirk- 
land et al., 1987; Hartel et al., 1996]. 

In examining the contributions of the various j, k terms to the imaging 
process, we will refer to the j = k terms as the "diagonal" terms, and the 
j 4: k terms as "off-diagonal." At zero thickness, when the exponential 
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function in Equation (25) can be ignored, the orthogonality of the Bloch 
states means that the off-diagonal terms give an equal and opposite image 
to the diagonal terms, resulting from the fact that zero intensity will be 
scattered to the detector for a zero thickness specimen. As the thickness 
increases, the integration over Ki in Equation (25) starts to weaken the 
off-diagonal terms due to the exponential function and the dispersion of the 
eigenenergy of the states, and so an image starts to appear. At the limit of 
infinite thickness, any dispersion of the Bloch states will force the off- 
diagonal terms to zero, resulting in an image formed purely from the 
thickness independent diagonal terms, which we will refer to as the residual 
object function ROF. In this purely elastic and perfectly coherent descrip- 
tion of scattering, the ROF is given by the sum of all Bloch waves weighted 
by their excitation coefficient and Cjj. In practice we arrange to use an inner 
radius such that the coherence envelope in Equation (26) is several times 
smaller than the smallest intercolumn distance that we wish to image. If the 
real-space form of the Bloch wave is slowly varying with respect to this 
coherence envelope, then the integral over C will approximate closely to 
being the inner product of ~b ~J) with itself, which subtracted from the 
Kronecker 3-function will give a small value. Therefore, only Bloch waves 
that are peaked on a scale much smaller than the intercolumn distance will 
contribute significantly to the ADF images. A calculation of the imaging of 
I n A s ( l l 0 )  at 300kV using 311 Bloch waves (Figure 8) confirms this, 
showing that the ROF is dominated by the ls-type states, localized on the 
In and As columns, even though for the In columns the 2s state is the most 
excited. 

We have seen that a narrow coherence envelope exists controlling the 
Bloch wave interference, and this might suggest that an incoherent imaging 
model can apply here. The narrow coherence envelope ensures that only 
highly localized Bloch states can contribute to the ROF, and localized states 
are by their nature relatively nondispersive. Figure 9 shows how the ROF 
is largely independent of Ki, which again allows the integral over Ki in 
Equation (23) to be performed over just the aperture functions, as in 
Equation (9). Transforming back to real-space then gives the incoherent 
imaging model of a convolution between the probe intensity and the ROF. 

In addition, Figure 9 shows that the ROF displays strong chemical 
sensitivity, with the higher atomic-number column being the most intense. 
Both the insensitivity to K i and the chemical sensitivity can be explained 
physically by considering the high-angle limit of the inner radius. Nellist and 
Pennycook !-1999] have shown that in this limit the diagonal Cjj terms 
become proportional to the transverse kinetic energy of the state, 

Cjj(Ki) oc <~bCJ)(Ki)[ T]~bCJ)(Ki) > (27) 
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FIGURE 8. The residual object function (ROF) and its profile for lnAs at 300kV 
calculated using a 311 beam Bloch state calculation. The Bloch states summed over to form 
the ROF are shown, and illustrate how the ls states dominate the ROF. The ADF inner radius 
is 30 mrad. 

T h e  Cjj m u l t i p l i e r  for the d i a g o n a l  t e rms  is therefore  jus t  the  expec ta t ion  

value  of the  t r ansve r se  k ine t ic  ene rgy  for tha t  pa r t i cu l a r  Bloch state. Since 

we are us ing  a h igh -ang le  de tec to r ,  we find tha t  on ly  Bloch  states wi th  

sufficient t r ansve r se  kinet ic  ene rgy  to sca t te r  to the  d e t e c t o r  con t r ibu te ,  so 

the  de t ec to r  is ac t ing  as a k ine t ic  energy  filter wi th  the local ized  ls  s tates 
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FIGURE 9. The profiles over the dumbbell pairs of residual object function (ROF) for InAs 
at 300 kV as for Figure 8, but over a range of K i directions as marked. Note how the ROF 
hardly changes as a function of Ki. 

dominating. So by forming an object function from the localized ls states 
weighted by their transverse kinetic energy, we obtain a map of atomic 
column positions weighted approximately by their atomic number, which 
we then image incoherently. 

An infinite detector with no hole would give perfect incoherence because 
the integral in Equation (26) would then reduce to 6jk, thus canceling out 
and destroying any interference between different Bloch waves. However, we 
mentioned earlier that at zero thickness the scattering by the off-diagonal 
terms was equal and opposite to the scattering by the diagonal terms, which 
implies that for an infinite detector, the ROF gives no scattering and, 
therefore, there is no image contrast. Just as for the phase object in Section 
II.D above, we need a hole in the detector to introduce some coherence to 
allow interference to create an observable from the wavefunction phase 
shifts that occur as the electron passes through the specimen. By increasing 
the inner radius of the detector we decrease the width of the coherence 
envelope, and therefore can approach the incoherent limit as closely as we 
like at the expense of reduced signal. To illustrate the effect of the hole in 
the detector, consider a situation where both the In and As columns are 
being illuminated by a large probe. Both the In ls state and the As ls state, 
denoted here by their subscripts 1 and 2, respectively, will be excited. The 
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strength of the interference between the two atomic columns can be gauged 
from the C12 term, which we will evaluate here at K i = 0. Consider first a 
small axial detector that detects only one Bragg beam, such that only 
D o = 1. This is the situation encountered in conventional TEM imaging, 
since by reciprocity a small STEM detector is equivalent to a low-beam 
convergence in the TEM illumination. The coherence envelope, being the 
Fourier transform of the detector, is now relatively large and allows the 
columns to interfere. The ratio of the magnitudes of C I2(K i - 0 )  to 
C I~(K i = 0) is 1.25, and therefore the interference between the In and As 
columns is significant, varying as a function of thickness, and their con- 
tributions must be included in a coherent imaging model. If instead we 
use an annular dark-field detector with an inner radius of 30mrad (a 
typical experimental value), the ratio of the magnitudes of C I2(Ki = 0) to 
Cll(Ki = 0) falls to 0.02. Now the coherence envelope is much narrower 
than the intercolumn spacing, and the interference effects between the two 
columns is weak. Each column is being imaged as an independent scatterer, 
and an incoherent imaging model can be used. Thinking of the imaging 
process as being the detection of interference between overlapping discs in 
a coherent CBED pattern, intercolumn interference gives rise to features 
that are smaller than the geometry of the detector, and are therefore 
averaged out. Only features that are slowly varying over the detector, which 
come from the contributions from the individual columns, can contribute to 
the image-forming process. 

In this approach we have not considered the question of whether the 
probe channels down the atomic columns. Propagation of a focused probe 
through a crystal by a Bloch wave approach has been considered by Fertig 
and Rose [1981] and Pennycook and Jesson [1990], and more recently by 
a multislice method by Hillyard et al. [1993]. In the approach presented 
here, we have shown that it is the filtering effect of the detector that imposes 
incoherence. Only the ls states can contribute to the contrast, and these will 
only be excited when the probe is located over the corresponding atomic 
column. Beam spreading and the excitation of other states through the 
thickness is not important. 

I I I .  LONGITUDINAL COHERENCE 

We have now discussed in some detail how interference between points that 
are separated in a direction perpendicular to the electron beam is not 
detected in ADF imaging, leading to an image that can be described by a 
convolution between the probe intensity and an object function. It has also 
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been shown that the object function has a strong dependence on the atomic 
number, Z, of the species present in a atomic column. We have not yet, 
however, considered in detail the effects of interference between atoms 
within the same atomic column, referred to as intracolumn interference, 
which will affect the dependence of the intensity of the peaks in the object 
function on parameters such as the specimen thickness, or the position of a 
dopant atom within a column. For  example, at the limit of high angle we 
might conclude that the Rutherford scattering from each atom is propor- 
tional to Z 2. If 10 atoms in a column are being imaged, is the ADF signal 
then 10 x Z 2 (which is the case for perfect incoherence along the column), 
or (10 x Z) 2 = 100 x Z 2 (the result if we assume that all the atoms interfere 
coherently and constructively)? In the latter case we would expect a 
quadratic dependence on thickness, whereas the former would give a linear 
dependence. In addition, conservation of energy gives a limit to the total 
intensity that can be detected, so the intensity cannot rise as a function of 
thickness forever. 

The phase object approximation of Equation (18) shows that at the limit 
of low thickness (that is low projected potential), the signal will rise 
quadratically as a function of thickness, as in Equation (19). It is clear that 
this has perfect longitudinal coherence. As the strength of the projected 
potential increases, the cosine function gives rise to an oscillatory depend- 
ence, which should be observable as thickness fringes. Such fringes are not 
observed in ADF imaging, so the longitudinal coherence is being broken to 
some extent. In this section we will first consider the role of the Fresnel 
propagation within the specimen, using the kinematical approximation. This 
approach is then extended to include the effect of phonons, and methods of 
including phonons in image calculations are listed. Finally, we discuss the 
effects of discontinuities in an atomic column, such as a single dopant atom 
or a surface adatom. 

A. Kinematical Scattering 

In Section II we saw how it was an integration in intensity over the 
transverse component of the scattering vector that destroyed the transverse 
coherence. Similarly, to destroy coherent interference within a column, 
known as intracolumn interference effects, we need an integration in recipro- 
cal space in a direction parallel to the atomic column. For  purely coherent 
scattering, this integration can only arise from an integration over the 
longitudinal component of the scattering vector, which comes from the 
curvature of the Ewald sphere. At high electron energies, however, the 
Ewald sphere is relatively flat and so the longitudinal components of the 
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FIGURE 10. A schematic diagram showing the Ewald spheres for two partial plane waves 
in the incident cone, and the associated scattering amplitude for reciprocal lattice vectors with 
various excitation errors. The ADF detector sums over the Bragg beams from many such 
reciprocal lattice vectors. 

scattering vector are small (Figure 10), so the detector geometry is much less 
efficient at breaking the longitudinal coherence than it is at breaking the 
transverse coherence. 

From Figure 10 it can be seen that the ADF detector will sum in intensity 
over different parts of the shape transform for different Bragg reflections. 
Kinematical theory (for details see Gevers [1970]) predicts that the ampli- 
tude of a reflection follows a sinusoidal dependence on specimen thick- 
ness, z, 

~g oc Vg sin(rCSgZ) (28) 
gSg 

and, therefore, the signal detected by the ADF detector as a function of 
thickness will consist of a sum over many of these sinusoidal oscillations, 

sinZ(rcSgZ) (29) 
IADF(Z) OC ~ D~IV.I z 

g 7~ Sg 

The thickness dependence will therefore depend on the structure and 
scattering factors of the specimen, and on the detector geometry. In general, 
the thickness dependence will start by showing an oscillatory behavior that 
progresses to a constant saturation value as the oscillations in the shape 
transforms of the reflections are averaged over by the summation over the 
detector [Treacy and Gibson, 1993]. The intensity oscillations can be 
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interpreted as being the interference effects between atoms in the same 
column as the column increases in length, with the decay of these oscilla- 
tions towards a mean value being the loss of coherence over a longer length 
column due to the detector geometry. Jesson and Pennycook [1993] point 
out that the first minimum of such oscillations will be close to the first 
minimum of the shape transform at a scattering angle given by the inner 
radius of the detector, which from Equation (29) is given by z -  22/02, 
assuming that the signal is dominated by scattering to this inner periphery 
of the detector. Their calculations for 100 kV ADF imaging of S i ( l l 0 )  with 
an inner radius of 50 mrad show the oscillations decaying over approxi- 
mately 10 nm. 

From Figure 10, if Ki and Ki + Q are diametrically opposite in the cone 
of incident illumination, then the excitation errors for the interfering 
scattered Bragg beams, g and g + Q, will be equal. As K i varies over the 
incident cone, however, the excitation errors will become different for the 
two scattered beams, and the intensities of the scattering will vary as a result. 
Strictly, the integrals in Equation (8) can no longer be separated, and the 
image intensity can no longer be written as the convolution between a probe 
intensity and an object function. The explanation for this is that the Fresnel 
propagation of the probe through the specimen thickness changes the probe 
profile for scattering from different heights in the specimen, and there is not 
one single profile that can be applied to all the scattering [Treacy and 
Gibson, 1995]. We might expect this effect to become more pronounced as 
the thickness increases, but in that case a full dynamical scattering approach 
should also be used. 

B. Dynamical Scattering 

The kinematical approach to the effect of thickness on ADF images has 
suggested that treating the image intensity as a convolution between the 
probe intensity and an object function should become less applicable as the 
thickness increases. Conversely in Section II.E it was observed that at the 
high-thickness limit, the object function was dominated by the bound ls 
states on the columns, and that the low dispersion of these states allowed 
the integral separation in Equation (25) giving rise to an incoherent imaging 
model. The multiple scattering gives rise to probe channeling [Fertig and 
Rose, 1981], which lessens the probe broadening effects. 

Having observed that the ls states dominate the scattering to the ADF 
detector, it is now instructive to examine the dependence of the dynamical 
object function given in Section II.E on thickness. Strong oscillations as a 
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function of thickness are observed [Nellist, to be published], which appear 
to decay only very slowly and persist over many tens of nanometers. The 
frequency of these oscillations also depends on the atomic species present, 
and is controlled mainly by the eigenenergy of the ls state for that column. 
The effect is as though standing waves are formed in each column individ- 
ually, with no crosstalk between the columns. Even though crosstalk may 
be occurring between adjacent columns, the destruction of intercolumn 
coherence by the detector prevents there being any effects from crosstalk in 
the ADF object function. The approach taken by Van Dyck and Op de 
Beeck [1996] is highly applicable here because of the ls state domination. 
The Bloch waves are written as a sum of the l s states on columns, n, bound 
to the columns and all the other states are collected as a background, 

I - i~zzEXS 1 
~(R, z) = ~ 4~,~S(R) exp 2E ~ _] + ~ ~b?)(R) (30) 

n j : / :  l s  

When the phase of the ls state in a given column is close to the other 
less-bound states, the wavefunction is close to being a plane wave, and there 
is little scattering to the ADF detector, whereas out of phase, it gives a 
strong peak in the wavefunction, and therefore in the object function. 
Whereas the approach of Van Dyck relies on the eigenenergies to separate 
the ls states, here it is the ADF detector that is selecting the ls states, and 
therefore this approach can be applied over a much greater range of 
thicknesses. 

C. H O L Z  Effects 

In the kinematical and dynamical analyses given above, the effect of 
scattering to higher-order Laue zones (HOLZ) has been neglected. In 
practice, HOLZ scattering does occur at the high scattering angles detected 
by an ADF detector. Spence et al. [1989] pointed out that HOLZ scattering 
could destroy the incoherent imaging model by the introduction of phase 
contrast. The reason is that HOLZ scattering gives rise to very fine lines in 
the CBED pattern rather than discs, and thus only occurs for specific values 
of Ki. The effect is similar to using a small detector, and the integrals in 
Equation (8) are most definitely not separable. Measurements by Penny- 
cook and Jesson [-1991] and calculations by Amali and Rez [1997] suggest 
that the contribution to the ADF signal by the HOLZ reflections is small 
compared to the thermal diffuse scattering (TDS) at those angles. Since TDS 
is a largely intrinsically incoherent scattering process, it is important to 
consider how it can affect the coherence in ADF imaging. 
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D. Thermal Diffuse Scattering 

It was suggested by Treacy et al. [1978] and Howie [1979] that in order to 
avoid coherent effects in an ADF image, the inner radius should be taken 
to an angle where thermal lattice vibrations have attenuated the strength of 
the coherent scattered Bragg beams, and the scattering is predominantly 
thermal diffuse scattering (TDS). In practice the situation is more compli- 
cated than this. In Section II it was shown that transverse incoherence 
occurs because of the detector geometry, even when it is detecting Bragg 
beams, but we might expect TDS to play a role in destroying intracolumn 
interference. It must be remembered, however, that lattice vibrations can be 
correlated between nearby atomic sites because the phonon spectrum has 
larger numbers of long-wavelength phonons, so we cannot assume that 
simply by detecting TDS, that all coherent effects will be destroyed. The 
situation is most easily visualized using the kinematical approximation. 

1. TDS Usin 9 the Kinematical Approximation 

The thermal vibrations of the lattice can be described in terms of the normal 
modes of vibration of the lattice. A quantum of excitation of the lattice is a 
phonon, so we may have many phonons in each mode. In addition to elastic 
scattering of the fast electron into the Bragg beams, there may well also be 
further scattering by a phonon. The phonon scattering can change both the 
momentum of the electron and its energy (see for further details Cowley 
[1975]. The latter effect renders the scattered electron incoherent with 
respect to the elastically scattered electrons. Thus the scattering to a final 
wavevector, Kf, can come from a region in reciprocal space given by the 
distribution of momenta of the scattering phonons (Figure 11). Over this 
region of scattering vectors, an integration in intensity occurs. Although this 
makes little difference to the transverse coherence because the detector is 
much larger than the range of phonon momenta (of the order of one 
reciprocal lattice), we now have an integration along the beam direction, 
destroying longitudinal coherence. Jesson and Pennycook [1995] have 
analyzed in more detail the extent to which the coherence is destroyed, but in 
general the loss of coherence is not as complete as in the transverse direction. 

2. TDS with Multislice Calculations 

It is now clear that to fully account for the effects of the partial longitudinal 
coherence, phonon scattering must be included in the dynamical scattering 
model. Calculations have been performed using both the multislice method 
and we will also discuss how a Bloch wave approach may be calculated 
using matrix diagonalization. 
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FIGURE 11. The grey arrows depict scattering by phonons in addition to elastic scattering 
into a final wavevector, Kf. The phonons provide further integration in intensity in both the 
transverse and longitudinal directions. 

The concept of the multislice calculation, proposed initially by Cowley 
and Moodie [1957] is straightforward. The crystal is divided into a number 
of thin slices. The projected potential within each finite slice is approximated 
to lie in an infinitesimal slice, thus acting as a thin-phase object, and the 
electron wavefunction is propagated between each slice as though it were in 
vacuum. For STEM, the incident wavefunction at the crystal is the probe's 
complex amplitude, so the calculation is more complicated than for plane 
wave illumination because a range of K i vectors are incident at the specimen. 
The first use of a multislice calculation for calculating STEM images did not 
include phonon scattering [Kirkland et al., 1987] and one application was 
the study of the visibility in ADF of single Au atoms on the surface of thin 
Si crystals [-Loane et  al., 1988]. These early simulations suggested that the 
position of an adatom through the thickness of a crystal could change its 
resultant effect on the image contrast, complicating the interpretation of 
intensity. 

The multislice approach was then extended to include phonon scattering 
using the "frozen phonon" approach [Loane et al., 1991]. Since an electron 
accelerated through 100 k V has a velocity of about half that of light, the 
time taken for it to pass through a typical TEM sample is of the order of 
10-16 s, about three orders of magnitude shorter than a typical phonon 
period of oscillation. The fast electron, therefore, can be regarded as 
interacting with a frozen "snapshot" of the crystal lattice. The dwell time of 
the probe at each probe position can be regarded as being long enough that 
many electrons pass through the sample, each one seeing a lattice with 
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thermal atomic displacements uncorrelated with the displacements seen by 
other electrons. The recorded signal is the intensity of the electron scattering 
summed over many atomic displacement configurations. The accuracy of 
this approach was first checked by simulating convergent-beam electron 
diffraction (CBED) patterns that would be observed in the STEM detector 
plane [Loane et al., 1991], though the patterns simulated did not have 
overlapping discs so the beam convergence used would not produce a 
sufficiently small probe for lattice imaging in any STEM imaging modes. 

Having shown that the frozen phonon approach does reproduce many of 
the features observed in the TDS background, ADF STEM images can be 
simulated by calculating the coherent CBED pattern for each probe posi- 
tion, and summing in intensity over the region detected. Such calculations 
for atomic-resolution ADF imaging did indeed confirm that the image had 
transverse incoherence [Loane et al., 1992], and the behavior of the images 
as a function of thickness could also be studied [Hillyard et al., 1993; 
Hillyard and Silcox, 1993]. The calculations suggested that the intensity of 
an atomic column as a function of thickness did not show contrast reversals, 
such as those observed for coherent TEM imaging, but is not a linear 
relationship. The strong dependence on the atomic number, Z, was also 
shown so that heavier elements have more intense columns. 

An alternative approach to the inclusion of phonon scattering in a 
multislice calculation has been developed by Dinges et al. [1995]. Instead of 
displacing the atoms in the calculation, a calculation of the phonon 
scattering at each slice is made, and this TDS is propagated along with the 
rest of the electron scattering through the crystal to allow for multiple elastic 
scattering. However, the TDS is no longer coherent with the elastic 
scattering because of the inelastic nature of phonon scattering, so no 
interference effects will occur between the TDS and the elastic scattering. To 
incorporate this into the calculation, the phonon scattering at each slice is 
multiplied by a random "statistical phase" shift. The full multislice calcula- 
tion is then repeated many times with different statistical phases so that any 
interference effects included by the calculation are eventually averaged over. 
This method has been applied in a practical way for the atomic resolution 
analysis of A1 concentration in A1GaAs quantum wells [Anderson et al., 
1997], where 55 probe positions within a single unit cell were computed for 
various A1 concentrations, and compared with the experiment after substan- 
tial noise reduction procedures had been performed. It is worth emphasizing 
the point made by Hillyard et al. [1993] that a resolution limited lattice 
image consists of just a few complex Fourier components, and so can be 
completely characterized by just a few numbers. A simulation of a lattice 
image, therefore, only requires that number of probe positions in judiciously 
chosen positions to allow the entire image to be simulated. 
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An approach using simple absorption potentials has been adopted by 
Nakamura et al. [-1997] for simulating single Au atoms substituted into a Si 
lattice. Further elastic scattering of the TDS giving rise to features such as 
Kikuchi lines is not included in this method, though since this only 
redistributes the TDS in scattering angle, and a large detector covering 
many scattering angles is used, it is interesting to consider how important 
this is. Since most of the absorption is TDS of which much will reach the 
ADF detector, it is important that this intensity is reintroduced to the final 
intensity measured in a way consistent with phonon scattering, which would 
not be peaked at zero scattering angle. Nevertheless, the calculations do 
suggest that "top-bottom" effects, with the intensity dependent on the Au 
depth in the crystal, will be observed. 

3. Bloch Wave Calculations with TDS 

Using the Bloch wave stationary solutions of the Schr6dinger equation to 
compute the electron wavefunction within a crystal has already been 
discussed and applied in Section II.E, though without any phonon scattering 
being included. It is possible to include absorption in such a calculation, and 
to also include an operator for phonon scattering, which operates on the 
electron wavefunction at all depths in the crystal to compute the TDS 
[Amali and Rez, 1997]. Such an approach does not include the effects of 
multiple phonon scattering, but the phonon scattering operator does allow 
for the creation (or destruction) of multiple phonons in one scattering event, 
so called "multiphonon" processes. The argument is made that subsequent 
elastic scattering need not be included if all the Bloch states are included. 
This argument only holds if all the phonon scattering is detected, which will 
only be true for a total detector. Physically this is neglecting any redistribu- 
tion of the TDS from the detector into the hole, which will probably be a 
small effect for a large detector. Such calculations have been performed for 
perfect crystals [Amali and Rez, 1997] and stacking faults in crystals [Amali 
et al., 1997], showing that defects rather than composition changes can also 
lead to contrast in ADF images. 

Pennycook and Jesson [1990] have suggested that if we can assume that 
the ADF signal has been incoherently generated by phonon scattering at the 
atom sites, then a model can be used where Bloch waves are used to 
calculate the electron density at the atom sites, and the intensity at the atom 
site summed over thickness. It was shown that, for a probe located 
symmetrically at an atomic column, the l s states are predominantly excited, 
which is the origin of channeling. Neglecting the other Bloch states gives rise 
to a particularly simple thickness dependence. 

In Section II.E we saw that the ADF detector acts as a kind of Bloch state 
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filter by selecting high transverse momentum, spatially localized states, 
which are the ls type states for zone axis imaging. Absorption and TDS by 
phonons also occurs over a highly localized region in the atomic column, 
and thus is strongest for electron wavefunctions with high transverse 
momentum, which is the origin of anomalous absorption. Redistribution of 
intensity by phonons from the Bragg beams to the TDS occurs for 
high-angle beams, and so selects the ls states in a similar way to the ADF 
detector. Note that it is not the phonon momenta that give rise to the high 
angles of TDS, since phonon momenta are typically of the order of a 
Brillouin zone, rather that the phonons preferentially scatter high transverse 
momenta electrons in the crystal. If we make the approximation that all the 
scattering incident on the ADF detector arises from ls states, either by 
coherent scattering or phonon scattering, then we can construct a simple 
prediction of the thickness behavior of ADF images. 

We now make an approximation, used by Van Dyck and Op de Beeck 
[1996] in the interpretation of conventional HRTEM images, that the 
eigenenergies of the non-ls states are negligibly small compared to those of 
the ls states. The wavefunction in the crystal is approximated as being the 
ls states, varying rapidly in phase through the thickness of the crystal, plus 
the non-ls states all propagating slowly, as described by Equation (30). 
When the ls and non-is states are in phase, as they are at the entrance 
surface, the wavefunction in the crystal will just be that of the incident 
wavefunction, which is the STEM probe and does not contain large enough 
momenta to reach the detector, so no intensity will be recorded. When the 
ls state is antiphase to the rest, the wavefunction will be the incident probe 
minus twice the ls state, so the electron density will show a large peak at 
the ls state and a large ADF signal will be recorded. This oscillatory 
behavior of the ls state can be seen in Bloch wave calculations [Fertig and 
Rose, 1981-1, and here we give its thickness frequency the symbol, ~. We now 
introduce the absorption from the ls state, with coefficient a, such that the 
coherent signal received by the ADF detector varies as 

/con(t) ~ e - ~ t [ 1  - cos(r (31) 

where t is the specimen thickness. The absorption from the ls state may be 
integrated over thickness, if we assume it is perfectly incoherent between 
atoms, to give the total TDS 

/ ,~s(t)  oc (1 - e - ~ )  - 1 + I 
O" 0 -2  

-~ e - ~ t  sin(~t) + -~5 (1 - e - o-t cos(~t)) 1 

(32) 

The component of the wavefunction in the ls state can thus couple to 
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FIGURE 12. A plot of the coherent, TDS and total intensities from Equation (33) using the 
parameters: a = 0.12 n m -  l, ~ = 0.48 n m -  l, and 0r = 0.17. 

high-angle plane-wave states in the vacuum beyond the crystal either at the 
exit surface, where it emits as coherent Bragg scattering, or through phonon 
scattering. Let us assume that most of the TDS is detected, as it is biased to 
high angles, but much of the coherent scattering passes through the hole; 
the exact fraction depending on the size of the hole. We can define the 
fraction of coherent to incoherent scatter as c~ and write the total ADF 
intensity as 

IADV(t ) = ITDS(t) + 0dcoh(t) (33) 

Equation (33) is therefore a three-parameter model with an analytical 
expression for the dependence of ADF intensity on thickness. The thickness 
dependence using Equation (33) with empirical values (Figure 12) compares 
very closely with the frozen phonon calculation of Hillyard et al. [1993] (see 
Figure 8 of that reference) for a column of In atoms. 

Of course, a full simulation is required initially to find the parameters and 
their dependence on column composition and the experimental conditions. 
Having parameterized ADF imaging in this way, however, may allow much 
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faster inversion of intensity data to determine thickness and composition. 
Probably the most immediate benefit of this type of analysis is to confirm 
the dominating ls model, and to show that the image formation mechanism 
for ADF imaging is becoming understood, and is simple compared to 
conventional HRTEM imaging. Simplifying the image formation process 
opens opportunities for quantitative image analysis. 

Defects can cause further complications by causing interband transitions 
within the Bloch states and repopulating ls states that have been exhausted 
by absorption. An example of this effect is bright contrast arising from strain 
around B dopant atoms in Si [Perovic et al., 1993]. It is thus clear that 
interpreting ADF intensities beyond a qualitative approach still holds many 
challenges, but nevertheless, the strong Z contrast nature of the imaging is 
extremely useful. 

IV. THE ULTIMATE RESOLUTION AND THE INFORMATION LIMIT 

A. Underfocused Microscopy 

In Section II.C we have already discussed the resolution limit in terms of 
the intensity distribution of the illuminating probe, and in reciprocal space 
the transfer function decreases to zero at a spatial frequency given by twice 
the objective aperture radius. In conventional HRTEM, however, the form 
of the contrast transfer function can be modified by changing the degree of 
defocus, and pass bands can be pushed out in reciprocal space allowing 
higher spatial frequencies to contribute to the image (see for details Spence 
[1988]. The ultimate resolution limit of information that can be transferred 
by the microscope, or information limit, is then not defined by the spherical 
aberration of the objective lens, rather by other sources of incoherence, such 
as illuminating beam divergence, chromatic aberrations and the overall 
stability of the microscope. It is now interesting to consider how much of 
the principles of HRTEM imaging can be applied to ADF imaging. We start 
by showing that underfocusing the objective lens can counter the effects of 
spherical aberration leading to a resolution improvement, which then 
creates the question of what then defines the information limit in ADF 
STEM. Clearly we do not need to consider beam divergence since we have 
shown by reciprocity that ADF imaging is equivalent to using an extremely 
high beam divergence to destroy coherence. We must, therefore, go on to 
look at the effects of chromatic aberrations and the STEM electron source 
size, which can also destroy coherence. Since we are already describing the 
imaging as being incoherent, will these further sources of incoherence make 
any difference? 
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s o u r c e / ' ~ _  ~~,,._ = 

underlocus 
FIGURE 13. Spherical aberration causes overfocusing of the higher angle beams so that 

they cross over before the gaussian image plane. By underfocusing the lens, the higher-angle 
beams cross over at the specimen. It is these high angle beams that can carry high-resolution 
information. 

Scherzer [1949] originally showed how, in the presence of spherical 
aberration, the image resolution could be optimized by underfocusing the 
objective lens. Geometric ray optics provides a simple way to picture this 
process (Figure 13). Spherical aberration can be described as being an 
overfocusing of the beams converging at higher angles, which is countered 
by an overall underfocusing. In terms of the incoherent OTF (Equation 9) 
it can be seen that underfocus is used to minimize the variation of the phase 
of A(Ki), which is Z, over the integral over Ki for all values of Q. Increasing 
the amount of underfocus will, in general, increase the phase variation and 
decrease the transfer. Increasing the underfocus, however, has pushed the 
turning point of Z out to higher values of Ki, which may be allowed to 
contribute if the radius of the objective aperture is increased. At certain 
values of Q that are beyond the usual resolution limit, the phase variation 
of A over the disc overlap region in (Equation 9) will become small (Figure 
14) and the OTF will show a peak (Figure 15). Although the OTF does not 
now have the simple form of the Scherzer OTF, it does now extend to much 
higher spatial frequencies. The corresponding probe intensity distribution 
does show a smaller central maximum allowing higher resolution informa- 
tion to be passed, but at the expense of lower intensity and long, oscillatory 
tails (Figure 16). The lack of a phase problem in ADF imaging means that 
the probe can in principle be readily deconvolved, unlike the case in 
HRTEM where the phase problem must first be solved using, for instance, 
holography [Orchowski et al., 1995; Lichte, 1991]. The enhancement in 
resolution described also can be pictured by geometric ray optics (Figure 
13): When the objective lens is highly underfocused, only the high angle 
beams are crossing at the specimen. These high angle beams are thus 
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FIGURE 14. For large defocus, the turning point in the quartic form of g means that there 
will be some large Q where the integral across the overlapping discs in Equation (9) gives a 
peak in the transfer function. The attenuation by chromatic defocus spread is shown by the 
grey gaussian surface. 

FIGURE 15. The OTF for a large objective aperture (17 mrad) and highly underfocused 
( - 1 3 0 n m  defocus) compared with that for Scherzer conditions (9.4mrad; -40nm) .  The 
underfocused OTF shows good transfer at high frequencies. The transfer at the origin is 
proportional to the area of the objective aperture. 
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FIGURE 16. Probe intensity profiles for a large objective aperture (17 mrad) and highly 
underfocused ( - 1 3 0 n m  defocus) compared with that for Scherzer conditions (9.4mrad; 
- 40nm) .  Note how the central maximum has become very much narrower and the first 
minimum is less than 0.1 nm from the origin. 

responsible for the sharp central maximum of the probe, and the out-of- 
focus lower angle beams give the broader probe tails. 

Demonstration of resolution improvement as described has been demon- 
strated [-Nellist and Pennycook, 1998a]. In the ~112) orientation Si has a 
projected structure of pairs of atomic columns, separated by only 0.078 nm, 
arranged in a rectangular lattice. An ADF image recorded at Scherzer 
conditions using the VG Microscopes HB603U STEM (300 kV, Cs = 1 mm) 
is unable to resolve the column pairs, but using an objective aperture with 
a radius of 17mrad (approximately twice Scherzer) and a defocus of 
- 1 3 0 n m  (Scherzer defocus is - 4 4  nm) gives an image where the column 
pairs are just appearing to be resolved (Figure 17) and the Fourier 
transform of this image shows that spatial frequencies as far as the {444} 
plane spacing are transferred, which is indeed enough to resolve the column 
pairs. Despite the probe intensity profile being somewhat complicated, the 
central maximum of the probe is still the strongest, still allowing direct 
interpretation to an extent, as shown in the simulation in Figure 18. 
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FIGURE 17. (a) An image recorded with an objective aperture of 17 mrad and at approxi- 
mately -130 nm defocus. The Fourier transform (b) shows transfer to the (444) planes with a 
spacing of 0.078 nm, resolving the pairs of Si columns, which can just be seen in the image and 
in profile plot (c) summed perpendicular to the pairs over 150 pixels. The profile plot also 
shows evidence of the probe sidelobes. 

B. Chromatic Aberrations 

I t  is r e m a r k a b l e  t ha t  r e s o l u t i o n s  well be low an  5 n g s t r o m  have  been  ach ieved  

in A D F  imaging .  In  H R T E M ,  i n f o r m a t i o n  l imits  be low 0.1 n m  have  been  

difficult to achieve.  T h e  l imi t ing  fac tor  is u sua l ly  the  c h r o m a t i c  a b e r r a t i o n s  

of  the  lens. E l ec t rons  of  different ene rgy  have  different focal  l eng ths  in the  

FIGURE 18. (a) The object function for Si(112) showing the atomic column positions. The 
closest spacing between the columns is 0.078 nm. (b) A simulated image by convolving with the 
probe intensity shown in the underfocused case in Figure 16. Note how the atomic columns 
are resolved. 
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FIGURE 19. The OTF with a defocus spread of 30 nm compared with no defocus spread 
and the chromatic envelope for HRTEM imaging for the same defocus spread. Note how the 
effect of chromatic defocus spread is much less severe for incoherent imaging, and just involves 
being limited in the midrange frequencies by an upper limit proportional to 1/Q. 

objective lens, and the energy spread of the beam leads to an incoherent 
spread in defocus, A, and a coherence envelope in reciprocal space of the 
form [Wade and Frank, 1977] 

gchr (Q) = exp[-�89 ] (34) 

This envelope sharply truncates the transfer of information in HRTEM 
(Figure 19), and is usually the major factor in controlling the information 
limit. Using tilted illumination can alleviate the effect giving rise to an 
"achromatic circle" in the transfer function [Wade, 1976] allowing certain 
spatial frequencies to be transferred at almost full strength. In this approach, 
however, only certain spatial frequencies are achromatic, and most are 
strongly attenuated by the chromatic defocus spread. 

Remembering that, from reciprocity, ADF STEM imaging is equivalent 
to HRTEM imaging with a large incoherent source providing illumination 
over many tilt angles, we may start to suspect that ADF imaging is robust 
to chromatic defocus spread since all spatial frequencies will have achro- 
matic contributions. Indeed, it has been observed in calculations by Shao 
and Crewe [1987] that the intensity of focused electron probes is relatively 
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insensitive to chromatic defocus spread. A simple quantitative approach to 
the probe broadening due to chromatic aberrations would be to add the 
diffraction broadening and chromatic broadening effects in quadrature to 
calculate the overall probe width. Here we can use the transfer function 
formulation of Section II.B to use a wave-optical approach to calculating 
the ADF chromatic envelope. 

By considering the transfer function strength calculated in Equation (9) 
as being an integral over overlapping microdiffracted discs, we can use the 
approach of Nellist and Rodenburg [1994]. The transfer function must be 
integrated over a defocus spread that is assumed to be a gaussian distribu- 
tion 

f expF_-z':V2/X2-1f H(K i ) H ( K i  - Q )  

x exp[iz(Ki, z + z') - iz(Ki - Q, z + z')] dK~ d:~ (35) 

where Z has been written as a function of defocus, z, explicitly. By 
substituting Equation (3), and noticing that Z is linear in z, some rearran- 
gement gives 

Tchr(Q) = I t  e x p [ - - z ' 2 / 2 A 2 ]  e x p [ i r c z ' 2 ( [ K i [  2 - [Ki - Q[2)] 

J J  

• H ( K i ) H ( K  i - Q) exp[-ix(K~, z) - iz(Ki - -  Q, z)] d~ dK i (36) 

The ~ integral can be performed first, and is actually the Fourier transform 
of exp[-zZ/2A2],  which gives another gaussian, 

Tchr(Q ) = f exp[-�89 .Q - IQI2)23 

x H(Ki)H(K i - Q) exp[iz(Ki, z) - iz(K~ - Q, z)] dKi (37) 

after expansion of the moduli-squared and ignoring the overall scaling, 
which is of no significance here. 

From Equation (37) it can be seen that for incoherent imaging, the 
chromatic defocus spread does not lead to a simple multiplicative coherence 
envelope scaling the transfer function, as it does for HRTEM. The effect of 
the chromatic spread depends on the influence of the first exponential 
function on the K i integral. This influence is shown schematically in Figure 
14. Along the line given by K i ' Q  = IQ]2/2 there is no attenuation. The line 
is the perpendicular bisector of Q, and arises from interference between 
partial plane waves in the convergent beam that have the same angle with 
respect to the optic axis, and are therefore achromatic with respect to each 
other. Parallel to Q, there is an attenuation in the integrand of Equation 
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(37) following a gaussian form that has a width that is inversely propor- 
tional to the defocus spread, A, and to the spatial frequency, Q. If the region 
of disc overlap that is the domain of the integral is narrower than the 
chromatic gaussian attenuation, then there will be little effect. It is only 
when the region of overlap, and therefore the transfer function, is large that 
the chromatic effects will be observed. Thus the effect of chromatic defocus 
spread is broadly to provide an upper limit to the transfer function. Since 
the width of the gaussian attenuation is inversely proportional to the spatial 
frequency, Q, the overall effect of chromatic aberration on the transfer 
function for incoherent imaging is to provide an upper limit that varies as 
1/IOl. 

The above analysis is illustrated by some calculations. The approximately 
linear form of the Scherzer OTF (Figure 19) for the VG Microscopes 
HB603U is limited by the chromatic attenuation for a defocus spread, 
A = 30rim. Because the transfer function upper limit imposed by the 
chromatic dcfocus spread is proportional to 1/IQI, only the midrange spatial 
frequencies are affected. Counterintuitively, the highest spatial frequencies 
are hardly affected by the defocus spread. The (0.136 rim) -~ spatial fre- 
quency (required to resolve the Si< 110> dumbbell pairs) is only reduced by 
a factor of 0.75 for A = 30nm, whereas the attenuation of HRTEM given 
by Equation (34) for the same defocus spread is 4 • 10-17, which in practice 
means that no signal would be observed. This can be understood by 
realizing that the highest spatial frequencies in ADF arise from partial plane 
waves that must be close to being the objective aperture diameter apart, and 
are therefore constrained to be almost achromatic with respect to each 
other. To achieve an attenuation of 0.75 at (0.136nm) -1 in coherent 
imaging requires A = 2.3 nm, which is much harder to achieve experimen- 
tally. For the underfocused case illustrated in Figure 15, it is found that a 
defocus spread of A = 10 nm still allows sub~.ngstrom information to be 
passed at a reasonable strength [Nellist and Pennycook, 1998a-I, the 1/[QI 
upper limit being a much more slowly decaying function of Q than the sharp 
truncation of Equation (34). 

The robustness of ADF imaging to chromatic defocus spread has been 
explained above in terms of interference between partial plane waves in the 
convergent beam that are largely achromatic with respect to each other. It 
is also possible to explain it qualitatively in terms of the illuminating probe, 
since conventional phase contrast HRTEM images can be formed in a 
STEM by using a small detector. Coherent phase contrast images depend 
strongly on the phase variation across the coherent illuminating probe to 
provide the phase contrast, whereas incoherent images, such as ADF 
images, are insensitive to the phase and just depend on the probe intensity. 
The phase of the probe is a very sensitive function of defocus, as evidenced 
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by the rapid contrast reversals that can be observed as the focus is changed, 
therefore integrating over a defocus spread is able to destroy much of the 
contrast in a phase contrast image. The intensity distribution in a probe 
varies more slowly than the phase, and thus the incoherent ADF image is 
much more robust to the integral over the defocus spread. 

C. Source Size and the Ultimate Resolution 

It is clear from Section B above that incoherent imaging using A D F  STEM 
is remarkably robust to chromatic aberrations, so we must consider other 
limitations to the resolution. We can regard the electron optics in a STEM 
as basically being present to demagnify the electron source such that it is 
imaged onto the specimen at atomic dimensions, so this demagnification 
and the effective source size is also important. The electron source can be 
regarded as being an ensemble of incoherent emitters distributed in space. 
Each emission point, after demagnification by the STEM electron optics, 
will give rise to a diffraction limited illuminating probe. The total illumina- 
ting probe intensity, J, must therefore be calculated by integrating over this 
ensemble, after taking into account the demagnification, 

J(R) = IP(R)I 2 | S(R) (38) 

where S is the geometric image of the source after taking into account the 
demagnification. Taking the Fourier transform of Equation (38) gives the 
O T F  with a finite source, 

T~o~(Q) = T(Q)S(Q) (39) 

where S is the Fourier transform of the geometric image of the source. Now 
we can see that the finite source gives rise to a multiplicative coherence 
envelope on the transfer function and limits it. To have strong transfer at 
the highest spatial frequencies allowed by the transfer function, a geometric 
image of the electron source that is significantly smaller than the diffraction 
limit is required. 

In addition to the objective lens, a STEM instrument is also fitted with 
condenser lenses, which allow the demagnification of the source to be 
continuously varied, so should not we simply use the highest demagnifica- 
tion possible? The answer is that we will have no current in the probe if we 
use this approach. In an optical system, the quantity known as the 
brightness is conserved, independent of the demagnification [Born and 
Wolf, 1980]. The brightness of a source is defined as the total current 
emitted divided by the emission and divided by the solid angle that the 
radiation is emitted into. In geometric ray optics, this quantity is conserved 
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and at the probe we can calculate the total current in the probe as follows: 
The solid angle in the cone of illumination is held constant because of the 
objective aperture, whose radius is essentially defined by the spherical 
aberration. Thus the total current is proportional to the area of the 
geometric image of the source. As we demagnify to reduce the source size, 
we lose current. This current is being lost because the condenser lenses are 
more highly excited leading to the beam being more dispersed in angle, and 
thus being lost by the fixed objective aperture. It is now clear that an 
extremely high brightness source is required. Indeed the development of the 
STEM [Crewe et al., 1968a] required the invention of the cold field-emission 
gun (FEG) [Crewe et al., 1968b] to provide the required brightness. Given 
an electron gun of certain brightness, the operator has then complete 
freedom to trade geometric source size against probe current to optimize 
their experiment and the spatial resolution they require. It can be seen in 
Section IV.B above, however, that a 300 kV FEG has sufficient brightness 
for subfingstrom imaging to be achieved. The final limits to resolution that 
are likely to be encountered are those arising from mechanical and electrical 
instabilities, which, as in any high-resolution microscope installation, should 
be minimized as much as possible. 

Finally, we turn to the prospects for resolution improvement using 
spherical aberration corrector systems that are currently being developed 
[Haider et al., 1998; Krivanek et al., 1997]. If such a corrector corrects 
spherical aberration but not chromatic aberration, then it is clear from the 
analysis presented in Section B that it will have greatest application to 
incoherent imaging. As the spherical aberration is corrected, and the 
diffraction broadening of the probe is reduced, it will be necessary to 
demagnify the electron source further. It is important to note, however, that 
total probe current will not be lost because the corrected spherical aberra- 
tion will allow the objective aperture radius to be increased, thereby exactly 
compensating. The current challenge appears to be the electrical stability 
required. 

g .  QUANTITATIVE IMAGE PROCESSING AND ANALYSIS 

A. The Absence o f  a Phase Problem 

The mathematical formulation of incoherent imaging as being the convol- 
ution between an object function and the illuminating probe intensity has 
an important consequence that the probe intensity may be directly decon- 
volved from an image without the prior requirement to solve the phase 
problem. The implications of this on the way the image intensities can be 
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analyzed in order to quantitatively determine atomic positions is discussed 
in this section. 

First it is necessary to understand the implications of the phase problem 
for deconvolutions in coherent HRTEM. The intensity in an HRTEM image 
can be written in the form of Equation (1). Both P and ~ are complex 
quantities, and by taking the final modulus-squared the overall phase of the 
convolution is lost. This so-called phase problem is important in many areas 
of diffraction and imaging [Burge, 1976] since it prevents direct inversion to 
the specimen structure. The probe complex amplitude, P, is only dependent 
on the microscope parameters and is, therefore, in principle, known. If the 
phase problem could be solved in Equation (1), then P could be decon- 
volved leaving the specimen function. Deconvolving P is thereby mathemat- 
ically compensating for the effects of spherical aberration, and solving the 
phase problem in order to achieve this was the motivation behind the 
invention of holography [Gabor, 1948]. More recently, techniques such as 
off-axis holography [Orchowski et al., 1995; Lichte, 1991] and focal-series 
reconstruction [Coene et al., 1992; Van Dyck and Coene, 1987] have been 
applied to this problem. Even having determined, ~, it is still necessary to 
carry out relatively long computer simulations of the dynamical electron 
diffraction within the specimen [M6bus, 1996; M6bus and Dehm, 1996]. 

In Equation (2) we can see that there is no phase problem. The probe 
intensity is real and positive, and can be directly deconvolved. Our aim is 
to result in the ADF object function, which should consist of sharp peaks 
at the atomic column positions, the positions of which could be directly 
measured to quantitatively determine the atomic positions. The first step to 
achieve this is to compute or determine the probe intensity, P(R). 

B. Probe Reconstruction 

The probe function is purely a function of the microscope, and therefore a 
completely known parameter. In practice the parameters on which the 
probe function depends, such as defocus and astigmatism, will vary from 
image to image as, for example, the height of the specimen within the 
objective lens changes. In many images, however, the feature of interest is a 
localized defect, such as a dislocation core, located within a large region of 
perfect crystal of known structure. We can therefore estimate the object 
function in that perfect crystalline region and use the image data to 
determine the probe. A more detailed description of such a scheme is given 
by Nellist and Pennycook [1998b], but the basic ideas are as follows: The 
approach is to first determine the OTF for that particular image. The 
Fourier transform of such an image can be taken and the intensities of the 
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corresponding spots measured. Making the approximation that the object 
function consists of 6-function-like peaks at the atomic column positions 
weighted by the square of the atomic number (Z 2) allows the Fourier 
components of the object function, or the incoherent structure factors, to be 
determined. These would be the expected spots strengths for a hypothetical 
perfect microscope with no resolution limit. Dividing the measured spot 
strengths by these computed Fourier components allows the microscope 
transfer function at these spatial frequencies to be determined. James and 
Browning [1999] have performed this procedure for different focus settings, 
and find that the determined transfer function values are close to those 
expected for the estimated focus. 

The observation can now be made that an image of a crystalline material 
does not allow the OTF to be uniquely determined, because only certain 
spatial frequencies are present. In general, perfectly periodic images contain 
very little information and can be characterized with only a few parameters. 
We are therefore to impose some form of constraint to proceed further. We 
assume that the transfer function is a relatively slowly varying function in 
reciprocal space, which is equivalent to assuming that we have a well- 
localized probe in real space. A linear interpolation is therefore taken 
between the derived transfer values, which has been shown to be a good 
approximation [Nellist and Pennycook, 1998b]. The estimated transfer 
function can now be transformed back to reciprocal space to calculate the 
estimated probe intensity distribution. In the above example of Nellist 
and Pennycook [-1998b] using GaAs(110), the final estimated probe was 
found to be marginally broader than the optimum diffraction limited probe, 
which is to be expected taking into account the residual instabilities of a 
microscope. 

C. Deconvolution Methods 

1. Multiplicative Deconvolution 

In reconstructing the probe above, what we have done is deconvolved the 
object function from the image resulting in the probe intensity distribution. 
By dividing the Fourier transform of the image by the Fourier transform of 
the object function, we have performed a multiplicative deconvolution. A 
variety of different deconvolution methods exists [Bates and McDonnell, 
1986], and we will explore the application of some of them to ADF object 
function reconstruction here, following the approaches of Nellist and 
Pennycook [1998b]. 

Having used a multiplicative deconvolution to reconstruct the probe from 
an image region containing perfect crystal, perhaps now the obvious place 
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FIGURE 20. The simulated image from Figure 18 with the probe intensity having been 
deconvolved using: (a) a Wiener filter; (b) the CLEAN algorithm. Both these object functions 
are completely consistent with the experimental data. 

to start is to apply a multiplicative deconvolution to the image area of 
interest, a defect say. Dividing the Fourier transform of the image by the 
transfer function will result in the Fourier transform of the object func- 
tion. The difficulty is that the transfer function goes to zero at the reso- 
lution limit, and dividing by close to zero transfer values will dramatically 
amplify noise. To protect against this, a Wiener filter may be used (for a 
description see Bates and McDonnell [1986], which in our notation has the 
form 

- I (Q)T*(Q) (40) 
Orec(Q) = IT(Q)I 2 + e 

~ 

where I is the Fourier transform of the recorded image, T* is the complex 
conjugate of the transfer function, and Orec is the reconstructed object 
function. A simulated image of Si(112) taken at Scherzer defocus is shown 
in Figure 18. The e parameter prevents an attempt to reconstruct the object 
function where the transfer is very low to minimize the impact of the noise. 
The result of applying a Wiener filter with e set to 10-3 of the maximum 
transfer value is shown in Figure 20. It is initially somewhat surprising that 
deconvolving the probe this way has made little difference to the image, and 
has not resulted in a sharply peaked object function from which we can read 
off the atom positions. 

The explanation of why the Wiener filter has been ineffectual lies in the 
form of the transfer functions. The initial OTF  is a smoothly decaying 
function that goes to zero at the resolution limit. The Wiener filter results 
in a new effective transfer function that has a value of 1 until spatial 
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frequencies where the transfer is weak and e starts to dominate in Equation 
(40). At this point the effective transfer function is decayed to zero. The 
result is an effective transfer function that goes to zero much more sharply 
than the original OTF. Sharp features in a transfer function lead to a degree 
of delocalization in the real-space image, and should be avoided. An 
optimum transfer function is one that decays in a smooth way to zero at the 
resolution limit, much like the original OTF. It is now clear that it is hard 
to improve upon the transfer function imposed by the microscope in ADF 
STEM, which also explains why ADF STEM images are straightforward to 
process and are often analyzed intuitively from the raw data or after a 
simple low-pass noise filter. 

It now becomes apparent that the obstacle to reconstructing a sharply 
peaked object function is not the form of the transfer function, rather the 
fact that information has been lost in the image-forming process. The object 
function contains information throughout reciprocal space, but above the 
resolution limit of the transfer function it is all lost. Since this information 
is thrown away, there can be many object functions that, once convolved 
with the probe intensity, can give rise to an observed image intensity. Such 
object functions would differ from each other in the information that exists 
beyond the resolution limit. To reconstruct to a single object function we 
need to impose a constraint further to the data we have measured in the 
microscope, using our prior knowledge and experience. 

2. The CLEAN Alyorithm 

At this point it is worth mentioning an alternative approach to deconvolu- 
tion, known as subtractive deconvolution. In attempting to deconvolve 
oscillatory point-spread function from astronomical radio telescope images, 
H6gbom [1974] invented an algorithm given the acronym, CLEAN. It has 
subsequently been applied to Patterson maps calculated from HOLZ 
electron diffraction patterns [Sleight et al., 1998], and here we examine its 
applicability to ADF images. 

The CLEAN algorithm has the following form: 

1. Locate the pixel in the raw data that has the maximum intensity. 
2. Transfer a fraction, 7, known as the loop 9ain, of the maximum intensity 

to the CLEANed reconstructed object function at that pixel location. 
3. Subtract a PSF from the raw data, centered at the peak pixel position 

and with a height of 7 times that intensity. 
4. Test the raw data to see if the contrast has fallen below some previously 

specified criterion. 
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The results of applying the CLEAN algorithm to the image shown in 
Figure 18 is shown in Figure 20. It is clear that a much sharper object 
function has been reconstructed than that found using the Wiener filter. A 
closer inspection of the algorithm, however, shows that there will always be 
a spatial spread of pixel values reconstructed in the object function, and so 
single peaks at the atom positions will not be achieved. Furthermore, the 
sharpening of the object function shows that a constraint has been applied, 
but it is not clear what the nature of this constraint is. Tan [1986] has 
analyzed the CLEAN algorithm to determine the constraint, and found the 
algorithm broadly tends to reconstruct a "sharp" object function, which, of 
course, is ideal for atomic-like object functions. The mathematical details of 
the constraint, however, are found to vary strongly as a function of the loop 
gain, 7, and the stopping parameter. Since these will be varied depending on 
the noise in the raw data, it cannot be said that the CLEAN algorithm will 
quantitatively give a consistent result. Having said that, the fast and simple 
implementation of the CLEAN algorithm, and its reconstruction of peak 
objects, makes it an attractive proposition, and it may well be worthy of 
further investigation as a tool for ADF imaging. 

3. Bayesian Methods 

The attempt in Section 1 above to use a Wiener filter to deconvolve the 
probe from an image demonstrated how it was not possible to determine a 
unique object function from the image data alone. The Wiener filter resulted 
in a blurred object function, which was a consistent object function for the 
image data, but was not the original one used consisting of an array of delta 
function. Both object functions are consistent with the data. To select 
between these valid object functions we need to incorporate some kind of 
constraint, but how should this be done mathematically? 

An approach that has been applied to image processing is to assert that 
the best we can hope to quantify is a probability distribution of the object 
functions given the experimental data (for example Sivia [1993]), written 
p(objectldata). The object function would allow us to determine both the 
most probably object function given the experimental data, but also allow 
us to quantitatively determine our confidence in that deduction [Skilling, 
1998]. Using Bayes theorem, it is possible to relate this distribution to other 
probability distributions, 

p(object ] data) = 
p(data I object)p(object) 

p(data) 

For a noisy image, the probability of getting the measured data set for a 
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given object function, p(data [ object), can be calculated by convolving the 
object function with the point spread function and performing a chi-squared 
comparison [Gull, 1978]. The probability of the data, p(data), is a constant, 
because the measured data is a constant. The probability of the object 
function, p(object), is the probability of that object function existing, without 
any other constraints. It is within this probability distribution that we must 
include our constraints, or prior knowledge about the system we are 
studying. It is therefore referred to as the prior probability distribution. 
Bayes theorem is making clear to us that there is no such thing as an 
unambiguous experiment. To interpret any experimental data, whether from 
an electron microscope or not, always requires prior experiences and 
knowledge. 

For ADF imaging, therefore, we need to find mathematical forms in 
which to encode our prior knowledge about the specimen. A popular prior 
in many different fields requiring image processing, for example radio, 
astronomy [Gull, 1978], has been entropy (for a review of applications see 
Buck [1991]). The prior has the form, 

p(object function)~ exp(~S) 

where 

S = - Z  filog fi 
i 

is the entropy, f~ are the pixel values for the object function, ~ is a constant. 
The idea is that entropy will always favor a smooth object; the highest 
entropy object is one that is completely uniform. Any structure in the object 
will result in a lower prior probability and will be less favored. Use of this 
prior in a Bayesian reconstruction will result in an object being reconstruc- 
ted with the minimum structure consistent with the experimental data. An 
algorithm designed to locate the object function with the highest p(ob- 
ject [ data) has been implemented by Skilling and Bryan [1984] and success- 
fully applied to ADF data (McGibbon et al., 1994; McGibbon et al., 1995]. 

For precise quantitative applications, however, it has become clear that 
entropy cannot be used [Skilling, 1998]. A simple explanation is that the 
result obtained will depend on the number of pixels in the image, that is, on 
the sampling of the data. Clearly the object function should just depend on 
the specimen, not on the way that the data has been collected. Quanti- 
tatively correct prior probability distributions should fall into a specific class 
of mathematical functions [-Sibisi and Skilling, 1997]. Such priors do exist, 
and an extremely promising one is known as massive inference [Skilling, 
1998], since it emphasizes objects with a small number of highly localized 
sources, ideal for atomic images. 



ANNULAR DARK-FIELD Z-CONTRAST IMAGING 197 

Clearly the lack of a phase problem in ADF imaging, and freedom from 
complicating effects such as contrast reversals, gives many opportunities for 
image processing and analysis. The vast majority of images are stil! analyzed 
in a qualitative way, but there is great scope for the development of 
quantitative methods that will provide investigators quickly and reliably 
with quantitative measurements of atomic column positions. 

VI. CONCLUSIONS 

A. Overview 

What we have tried to show in this paper is that annular dark-field imaging 
in a scanning transmission electron microscope is simply the implementa- 
tion in TEM of incoherent imaging as discussed by Lord Rayleigh [1896]. 
In general, incoherent imaging is far more common than coherent imaging. 
The images formed by our eyes are generally incoherent, since we usually 
have large incoherent light sources, and most optical microscopy is also 
incoherent. The great advantage to us of using incoherent imaging is that 
most of the interference effects that can complicate an image are destroyed, 
leading to much more straightforward interpretation of images. We would 
struggle to interpret what our eyes were seeing if we used mostly coherent 
sources, such as lasers, resulting in large fields of interference fringes. It is 
somewhat surprising that incoherent imaging in TEM has been so long in 
arriving, and must have much to do with requiring the microscope to form 
diffraction patterns and diffraction contrast images, both of which require 
coherent illumination. Such constraints do not apply at high resolution, and 
we hope we  have demonstrated that incoherent imaging holds many 
advantages. 

It must be acknowledged that incoherent image formation has lost 
information relative to coherent image formation. The use of a large 
detector geometry has averaged over many of the interference effects 
observable in the STEM detector plane. The complicated interference 
fringes seen in coherent imaging do contain information, but it is not easily 
invertible to a specimen structure. Generally the only way to proceed is to 
simulate images from trial structures to match against the images, with the 
danger that the true structure may be missed. The removal of information 
in the incoherent image formation process simplifies the interpretation of the 
data, and enough information is retained to determine the object structure. 
This allows the opportunity to observe unexpected structures, which is of 
crucial importance since it would be somewhat arrogant to assume that we 
could predict all the atomic structures that we are ever likely to observe. 
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The type of information that can be derived from an ADF image falls into 
two broad classes: the determination of the projected position of atoms and 
atomic columns, and the determination of the elemental composition of the 
specimen. The former of these applications relies mainly on the destruction 
of transverse coherence, which results in the ADF image intensity being a 
convolution between the probe intensity and an object function with sharp 
peaks at the atom positions. Here we have shown that transverse coherence 
is destroyed by the geometry of the detector. Even if we assume purely 
coherent scattering, a large detector in a STEM is equivalent by reciprocity 
to a large incoherent source in conventional TEM, resulting in incoherent 
imaging. The destruction of transverse coherence is almost complete, and 
opens the way to a whole variety of image processing and analysis methods. 

The two-dimensional transverse nature of the ADF detector, while being 
highly efficient at destroying transverse incoherence, is much less efficient at 
destroying coherence between atoms along the beam direction. Here we 
must rely much more on the fact that at high angles we collect a large 
proportion of electrons that have been scattered by both an elastic scatter- 
ing event and a phonon. The phase randomization by the phonon scattering 
can help in destroying the coherence between the scattering from different 
atoms, but the coherence destruction process is much less complete in this 
longitudinal direction. This residual coherence can be seen in effects such as 
strain contrast in the images, and provides to a limit to the degree to which 
the column intensities in an image can be quantitatively interpreted in terms 
of composition. The high angle nature of ADF imaging, though, does mean 
that the scattered intensities are a much stronger function of atomic number 
than in HRTEM, which relies on much lower angle scattering. This 
Z-contrast nature of ADF STEM is extremely useful and has found many 
applications, albeit generally of a qualitative nature. 

B. Future Prospects 

Although, to date, the number of machines worldwide capable of perform- 
ing ADF STEM imaging has been rather low, there are already many 
examples of its application to materials problems ranging from semiconduc- 
tor interfaces [-McGibbon et al., 1995] to supported catalysts [-Nellist and 
Pennycook, 1996]. The main hindrance has been that dedicated STEM 
instruments have been required, which have been very much research 
machines requiring dedicated staff. Recently, field-emission gun TEMs 
(FEGTEMs) have been displaying impressive capabilities as STEM instru- 
ments [James and Browning, 1999], thus combining TEM and STEM 
capabilities within one machine. With the prolific growth in the number of 
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FEGTEMs being acquired, there will be a major growth in the use of the 
STEM approach, particularly ADF imaging, especially as the benefits of 
incoherent imaging are observed first-hand by a growing bunch of users. 

Naturally the growth in the number of applications of ADF imaging will 
promote further developments in the STEM capabilities of machines. 
Improvements may include better electrical and mechanical stability, im- 
proved scanning capabilities, and higher detector efficiencies. Such improve- 
ments will be of benefit also in the use of STEM for high spatial resolution 
microanalysis. 

In terms of image interpretation, the future lies in rapid quantitative 
deductions about the specimen. There is no doubt that qualitative interpre- 
tation of the image data will be the first approach used, as it is with most 
image data, but we have shown here that ADF imaging provides excellent 
opportunities for quantitative interpretation. Determination of atomic posi- 
tions from the image data has been achieved, being relatively straight- 
forward information to retrieve, and should quickly become fast and 
routinely done. Use of the image intensities for quantitative compositional 
determination is more difficult because of residual coherence, especially in 
the presence of, for example, strain. To date, attempts to perform quanti- 
tative determination have involved long calculations. Such calculations 
generally retain all the coherent scattering information, which is finally lost 
at the end when the summation over the detector is done, and therefore 
there is a lot of wasted time in the calculation. What is required are 
approaches where the incoherence is built in so that only the relevant terms 
in the calculation are retained. Further theoretical work is required here. 
More than one image may also be required for more detailed interpretation. 
For example, a series of images of the same area could be recorded over a 
series of different inner radii. This data set should be able to distinguish 
between the effects of strain and atomic number contrast. 

Finally, ADF STEM has already established itself as an important 
technique for the atomic-resolution investigation of materials, and will act 
as a catalyst for a much greater interest in all the applications of STEM. 
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