Why our brains are more unique in our childhood and old age

Despite vast differences in the genetic code across individuals and ethnicities, the human brain shows a “consistent molecular architecture,” say researchers supported by the National Institutes of Health. The finding is from a pair of studies that have created databases revealing when and where genes turn on and off in multiple brain regions through development.

“Our study shows how 650,000 common genetic variations that make each of us a unique person may influence the ebb and flow of 24,000 genes in the most distinctly human part of our brain as we grow and age,” explained Joel Kleinman, M.D., Ph.D., of the National Institute of Mental Health (NIMH) Clinical Brain Disorders Branch.

Kleinman and NIMH grantee Nenad Sestan, M.D., Ph.D. of Yale University, New Haven, Conn., led the sister studies in the Oct. 27, 2011 issue of the journal Nature.

Here are some of the study’s key findings:

  • Individual genetic variations are profoundly linked to expression patterns. The most similarity across individuals is detected early in development and again as we approach the end of life.
  • Different types of related genes are expressed during prenatal development, infancy, and childhood, so that each of these stages shows a relatively distinct transcriptional identity.
  • Three-fourths of genes reverse their direction of expression after birth, with most switching from on to off
  • Expression of genes involved in cell division declines prenatally and in infancy, while expression of genes important for making synapses, or connections between brain cells, increases. In contrast, genes required for neuronal projections decline after birth – likely as unused connections are pruned.
  • By the time we reach our 50s, overall gene expression begins to increase, mirroring the sharp reversal of fetal expression changes that occur in infancy.
  • Genetic variation in the genome as a whole showed no effect on variation in the transcriptome as a whole, despite how genetically distant individuals might be. Hence, human cortexes have a consistent molecular architecture, despite our diversity.
  • Over 90 percent of the genes expressed in the brain are differentially regulated across brain regions and/or over developmental time periods. There are also widespread differences across region and time periods in the combination of a gene’s exons that are expressed.
  • Timing and location are far more influential in regulating gene expression than gender, ethnicity or individual variation.
  • Among 29 modules of co-expressed genes identified, each had distinct expression patterns and represented different biological processes. Genetic variation in some of the most well-connected genes in these modules, called hub genes, has previously been linked to mental disorders, including schizophrenia and depression.
  • Telltale similarities in expression profiles with genes previously implicated in schizophrenia and autism are providing leads to discovery of other genes potentially involved in those disorders.
  • Sex differences in the risk for certain mental disorders may be traceable to transcriptional mechanisms. More than three-fourths of 159 genes expressed differentially between the sexes were male-biased, most prenatally. Some genes found to have such sex-biased expression had previously been associated with disorders that affect males more than females, such as schizophrenia, Williams syndrome, and autism.
  • Thanks to to the NIH for this story. To read more click here.

    Tags: , , ,

Leave a Reply