Posts Tagged ‘molecular biology’

Unique Change in Protein Structure Guides Production of RNA from DNA

 :: Posted by American Biotechnologist on 11-08-2013

One of biology’s most fundamental processes is something called transcription. It is just one step of many required to build proteins—and without it life would not exist. However, many aspects of transcription remain shrouded in mystery. But now, scientists at the Gladstone Institutes are shedding light on key aspects of transcription, and in so doing are coming even closer to understanding the importance of this process in the growth and development of cells—as well as what happens when this process goes awry.

In the latest issue of Molecular Cell, researchers in the laboratory of Gladstone Investigator Melanie Ott, MD, PhD, describe the intriguing behavior of a protein called RNA polymerase II (RNAPII). The RNAPII protein is an enzyme, a catalyst that guides the transcription process by copying DNA into RNA, which forms a disposable blueprint for making proteins. Scientists have long known that RNAPII appears to stall or “pause” at specific genes early in transcription. But they were not sure as why.

Read more …

Complex Diseases Traced to Gene Copy Numbers

 :: Posted by American Biotechnologist on 10-17-2013

Duke researchers have connected very rare and precise duplications and deletions in the human genome to their complex disease consequences by duplicating them in zebrafish.

The findings are based on detailed studies of five people missing a small fragment of their genome and suffering from a mysterious syndrome of craniofacial features, visual anomalies and developmental delays.

When those patient observations were coupled to analyses of the anatomical defects in genetically altered zebrafish embryos, the researchers were able to identify the contribution specific genes made to the pathology, demonstrating a powerful tool that can now be applied to unraveling many other complex and rare human genetic conditions.

The findings are broadly important for human genetic disorders because copy-number variants (CNVs) — fragments of the genome that are either missing or existing in extra copies — are quite common in the genome. But their precise contribution to diseases has been difficult to determine because CNVs can affect the function of many genes simultaneously.

Read more…

The Mitosis Dance

 :: Posted by American Biotechnologist on 09-09-2013

The following video is an attempt by Baylor University students to explain Mitosis through dance. How well do you think they conveyed their message?

Extracting and Purifying Human DNA in Under Three Minutes

 :: Posted by American Biotechnologist on 05-07-2013

University of Washington engineers and NanoFacture, a Bellevue, Wash., company, have created a device that can extract human DNA from fluid samples in a simpler, more efficient and environmentally friendly way than conventional methods.

Conventional methods use a centrifuge to spin and separate DNA molecules or strain them from a fluid sample with a micro-filter, but these processes take 20 to 30 minutes to complete and can require excessive toxic chemicals.

UW engineers designed microscopic probes that dip into a fluid sample – saliva, sputum or blood – and apply an electric field within the liquid. That draws particles to concentrate around the surface of the tiny probe. Larger particles hit the tip and swerve away, but DNA-sized molecules stick to the probe and are trapped on the surface. It takes two or three minutes to separate and purify DNA using this technology.

Read the full story on the UW website.

James Watson: How we discovered DNA

 :: Posted by American Biotechnologist on 11-29-2012

Very entertaining!