Increase Western Blot Throughput with Multiplex Fluorescent Detection

The most common method for analyzing protein expression levels is western blotting with detetion of a single protein target, using horseradish peroxidase-conjugated or alkaline phosphatase-conjugated antibody probes combined with colorimetric or chemiluminescent detection. While these methods work well for studying a single target, they are unsuitable for anlayzing multiple targets at the same time, particularly if the target proteins are of unknown or similar sizes. For analysis of multiple targets, the blot is typically stripped and reprobed for additional targets of interest. Reprobing is time consuming, and often some of the target protein on the blot is lost as a result of the stripping procedure. If one protein is removed to a greater of lesser extent relative to another protein, the ability to quantitate the relative amounts of diffferent proteins of interest is compromised.

In this technical note, you will be introduced to fluorescent western blotting detection which is superior to traditional western blotting when trying to analyze multiple proteins.

Advantages include:

  • fast and quantitative detection of multiple proteins in a single experiment
  • sensitivity compared to chemiluminescent detection
  • linear dynamic range up to 10 times greater than that of chemiluminescent detection
  • fewer experimental steps than chemiluminescent detection
  • no substrate requirement, and therefore no risk of exhausting the substrate and causing a “dead zone” in the blot
  • the ability to visualize and quantitate both phosphorylated and non-phosphorylated forms of individual proteins

The technical note is divided into three sections to help those who are new to fluorescent western blot detection quickly generate reliable and reproducible results.

Click here to download the the technote now!

Tags: , , , , ,

Leave a Reply